
Performance measurement of DAQ-Middleware

Hiroshi Sendai, Kazuo Nakayoshi, Yoshiji Yasu and Eiji Inoue
Institute of Particle and Nuclear Studies,
High Energy Accelerator Research Organization (KEK)
1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan

E-mail: hiroshi.sendai@kek.jp

Abstract. DAQ-Middleware is a software framework of network-distributed data acquisition
system. DAQ-Middleware was developed based on Robot Technology Middleware (RT-
Middleware), which is an international standard of Object Management Group (OMG) in
Robotics. OpenRTM-aist is an implementation of RT-Middleware developed by the National
Institute of Advanced Industrial Science and Technology. New implementation of DAQ-
Middleware has been done according to the new OpenRTM-aist released early 2010 while
DAQ-Middleware has been improved. Then, we measured the performance of the new DAQ-
Middleware compared with previous one. We measured the throughput of DAQ-Middleware on
several conditions. We observed improvement of performance in the new DAQ-Middleware.

1. DAQ-Middleware
DAQ-Middleware [1] is a software framework of a network-distributed DAQ system based on
Robot Technology (RT) Middleware. RT-Middleware (RTM) is an international standard of the
Object Management Group (OMG) not only for Robotics but also for embedded systems [2].
RT-Middleware provides the integration of RT systems as a Robotic Technology Component
(RTC), which is the software unit. An RTC is a logical representation of a hardware and/or
software entity that provides well-known functionality and services. OpenRTM-aist is a software
package of RT-Middleware which was developed by the National Institute of Advanced Industrial
Science and Technology (AIST), Tsukuba, Japan [3]. DAQ-Middleware was developed based on
this package which implements in C++ and Python as programming languages and CORBA as
communication protocol.

Why did we adopt RT-Middleware? Many DAQ systems so far could share the device
driver and the library. Thus, they could make their own DAQ system using the common
software. However, they could not share the software on the DAQ-Component level. Sometimes
experimental groups could share a common DAQ system. We rather like to use not the level
of the DAQ system, but the DAQ-Component because of its flexibility and reusability. Why
could we not share the DAQ-Component? Because of there was no international standard of the
DAQ-Component level so far. RT-Middleware is an international standard of DAQ-Component
level. Thus, DAQ-Middleware is one of the solutions.

Figure 1 shows the architecture of the DAQ-Middleware. DAQ-Component is a software unit
used to build an integrated DAQ system. DAQ-Operator is a special DAQ-Component which
controls other DAQ-Components. A basic DAQ unit usually resides on a PC and consists of
a set of components required to read and store data that are typically a Gatherer component,



Figure 1. Systematic view of DAQ-Middleware

Activity

RTComponent

RTComponent Service

SDO Interfaces RTC Interfaces RTCEx Interfaces

OutPortInPort

RTCS Consumer

InPort 0

n troPtuOn troPnI

OutPort0

Service

Service

reply

push
put

get, subscribe

reffuBreffuB

BufferBuffer

Consumer

Proxy

Consumer

Proxy

reply

get
put

use
provideprovide

State Machine

 

Status

Command

Status

Data Data

Command

y

tattee MMaacchhiinntaatte MMac

y

S hinnne

Handling Handling 
Status/Command Status/Command Status/Command Status/Command 
Flow

S
FlowFlowFlow

SS

Handling Data 
Flow

Main Thread

Figure 2. Features of DAQ-Middleware component

a Logger component, a Monitor component and a Dispatcher component. It is assumed that
there are a DAQ operator component with system interface on a PC, and basic DAQ units on
multiple PCs. A control panel of user interface on Web browser communicates with the DAQ
operator. The DAQ operator reads the configuration file written in XML. After that, the DAQ
operator can accept configure command from the control panel for system configuration, for
an example. In same way, the control panel can issue begin and end commands to control the
readout, the data logging and the online data analysis. The online histogram using ROOT [4]
and online displaying on Web browser are shown in the figure.

RT-Component consists of several objects in Figure 2. DAQ-Middleware-Component is one
of RT-Components. InPort and OutPort are data stream input and output, respectively.
RT-Component Consumer and Service port are service interfaces for user command and
reply to change internal attributes from outside. The DAQ-Component inherits the InPort,



Figure 3. DAQ-Component

Table 1. Specification of test machines.

Model Dell PowerEdge SC1430

CPU Intel Xeon 5120 @ 1.86GHz 2 Cores × 2
Memory 2GB
Network Intel Pro 1000 PCI/e (1GbE)
OS Scientific Linux 5.4 (i386)

OutPort, Consumer and Service port of RTC. The InPort/OutPort are used for data path and
Consumer/Service port are used for command/status path. The main thread is used for core
logic with handling command/status flow and data flow. The thread does not work just in
client/server model, but is autonomous with state machine. Users of DAQ-Middleware merely
implement the component logics for data handling as their needs as described in Figure 3.
DAQ-Middleware is used for data taking at the several beam lines in the Materials and Life
Science Experimental Facility (MLF), Japan Proton Accelerator Research Complex (J-PARC).
There are several gatherer components due to the difference of the read-out modules. There are
several monitor components due to the difference of scientific work. But the other components
are common [5, 6].

2. Performance measurement
Our aims of the measurements are to confirm the improvement of data transfer port on new
DAQ-Middleware and to study the feasibility of DAQ-Middleware on a multi-core system. New
implementation of DAQ-Middleware is based on OpenRTM-aist-1.0.0. So far, previous DAQ-
Middleware is based on the special implementation of OpenRTM-aist-0.4.1.

We measured total throughput of data transfer on the new implementation and the previous
one. The omniORB 4.0.7 implementation [7] was used as CORBA communication protocol.

DAQ-Middleware is used on not only multiple computers but also a multi-core system. Thus,
we prepared two different communication channels, Gigabit Ethernet and loopback device.

Table 1 shows specification of PC used for the measurement. The configurations and the
results will be shown in the following.

2.1. Setup with Ethernet and the result
Configuration 1: Run a source component and a sink component in the separate PC. The

source component sends data to the sink one. We changed the one data chunk size from
1 kB to 1 MB. The sink component receives data from the source component and then



data chunk size (kB)
1 10 100 1000

M
B

/s

0

10

20

30

40

50

60

70

80

90

100

New

Previous

Ethernet, Source - Sink

Figure 4. Result of Ethernet Source - Sink
connection

data chunk size (kB)
1 10 100 1000

M
B

/s

0

10

20

30

40

50

60

70

80

90

100

New

Previous

Ethernet, Source - Repeater - Sink

Figure 5. Result of Ethernet Source -
Repeater - Sink connection

data chunk size (kB)
1 10 100 1000

M
B

/s

0

50

100

150

200

250

300

350

400

New

Previous

Localhost, Source - Sink

Figure 6. Result of Localhost Source - Sink
connection

data chunk size (kB)
1 10 100 1000

M
B

/s

0

50

100

150

200

250

300

350

400

New

Previous

Localhost, Source - Repeater - Sink

Figure 7. Result of localhost Source -
Repeater - Sink connection

discards data without saving to disk to measure network total throughput. Ethernet frame
size is 1500 bytes.

Configuration 2: A filter component that just passes data from one component to other, is
necessary. It is called repeater. Put a repeater component between the Source component
and the Sink one.

The result is shown Figure 4 and Figure 5. Blue solid line shows the performance using
previous DAQ-Middleware and red solid line shows that using new DAQ-Middleware. Figure 4
and Figure 5 shows the total throughput on new DAQ-Middleware has been improved. There
are at least two points of the reason why it has been improved. One is that a temporary
buffering mechanism in flush mode on the OutPort of new OpenRTM-aist has been removed.
This means that the number of data copy on the data transfer is reduced. Another is that the
data type for the data transfer has been changed from CORBA any to CORBA oct. It reduced
the serialization time of data.



Table 2. 8 Cores PC Specification

Model HP xw8600

CPU Intel Xeon 5420 @ 2.50 GHz 4 Cores × 2
Memory 8GB
Network Intel Pro 1000 PCI/e (1GbE)
OS Scientific Linux 5.4 (i386)

Figure 8. Many Repeaters on 8 cores CPU

data chunk size (kB)
1 10 100 1000 10000

M
B

/s

0

50

100

150

200

250

300

350

400

New, 0 Repeaters
New, 1 Repeater
New, 2 Repeaters
New, 3 Repeaters
New, 4 Repeaters
Previous, 0 Repeaters
Previous, 1 Repeater
Previous, 2 Repeaters
Previous, 3 Repeaters
Previous, 4 Repeaters

Localhost on 8 core CPU

Figure 9. Result of many repeaters on 8
cores CPU machines

2.2. Setup with Loopback device (localhost) and the result
We have measured the total throughput on a multi-core system. The result is shown in
Figure 6 and Figure 7. Much higher throughput of new DAQ-Middleware has been observed in
comparison with previous DAQ-Middleware.

2.3. Setup with a PC with 8 CPU cores and the result
As we observed the high performance of DAQ-Middleware on a multi-core system, we prepared
a PC with 8 CPU cores. Table 2 shows the specification of the PC. Several repeaters between
the Source component and the Sink one were used as shown in Figure 8. Figure 9 shows the
result. The total throughput on conditions with more than one repeater had similar trend. This
means that similar performance will be expected on multi-core system even if the number of
component increases.

Throughout all results of the measurement except that in Figure 4, the measurements found
a drop of throughput for a data chunk size above 100 kB. Thus, we discuss this point. The
packet drop was not observed in all of the measurements. DAQ-Middleware has OutPort and
InPort as data path and uses CORBA as data transfer protocol as already described. The
InPort is a thread while it has a ring buffer to store data temporarily. Therefore, data copy
speed is important for DAQ-Middleware while the protocol enables the flexibility of system
configuration against shared memory or message queue mechanism in an Operating system. In
all of conditions in the measurements, CPU cache effect should be considered. However, we
could not find the reason of the drop of throughput yet in the measurements.



3. Conclusions
Improvement of performance of the new DAQ-Middleware was verified on not only multiple
computers but also a multi-core system. DAQ-Middleware will be expected that it works well
on a multi-core system. The adoption of multi-core PC instead of 1 Gbps Ethernet may be one
of the solutions for DAQ-Middleware from performance point of view. The measurements found
a drop of throughput for a data chunk size above 100 kB. More investigation is necessary to find
out the reason.

Acknowledgments
The authors wish to thank N. Ando, T. Kotoku and S. Hirano of the National Institute of
Advanced Industrial Science and Technology, Japan. The authors also wish to thank people
in Open-It, M. Tanaka, T. Uchida, M. Ikeno and KEK electronics system group for their help.
This work was performed in the framework of Open-It.

References
[1] Yasu Y, Nakayoshi K, Sendai H and Inoue E 2010 IEEE Trans. Nucl. Sci. 57 487
[2] Object Management Group 2008 Specification of Robotic Technology Component (RTC) URL http://www.

omg.org/spec/RTC/1.0/

[3] Ando N, Suehiro T, Kitagaki K, Kotoku T and Yoon W 2005 Proc. of IEEE Int. Symp. on Computational
Intelligence in Robotics and Automation 457

[4] The ROOT Team, ROOT URL http://root.cern.ch/

[5] Nakayoshi K et al. 2009 Nucl. Instr. and Meth. A 600 173
[6] Nakayoshi K et al. 2010 Nucl. Instr. and Meth. A 623 537
[7] omniORB URL http://omniorb.sourceforge.net/


