

DAQ-Middleware 1.2.1 Development Manual

Hiroshi Sendai
Institute of Particle and Nuclear Studies, High Energy

Accelerator Research Organization

$Date: 2012/09/28 05:27:41 $

Outline

This document is the manual for the development of DAQ-Middleware. It describes

the followings.

1. How to prepare the development environment for DAQ-Middleware 1.2.1.
2. How to use the development environment for DAQ-Middleware 1.2.1.
3. How to create and start the sample components.

For the items implemented in DAQ-Middleware 1.2.1, see “DAQ-Middleware 1.1.0

Technical Manual” [2].
The sample components created in this text are; the ‘SampleReader’ component to

read out data from the read-out module, and the ‘SampleMonitor’ component to receive
data from the ‘SampleReader’ component and then display their histogram on the screen.
The ‘SampleReader’ has been designed to read out data from a software emulator so that
no particular hardware is required.

The following programming skills should be premised in this manual.

1. Ability to write programs in C and C++ languages.
2. Ability to use development tools such as gcc and make.
3. Ability to program with sockets to read out data from network instruments.

Table of Contents

2	

Table of Contents

1 About this manual .. 4
2 Preparation of development environment .. 5

2.1 When using the ‘VMware Player’ ... 5
2.2 How to install ‘RPM’ binaries to ‘Scientific Linux 5.x or 6.x’ 6
2.3 How to install from source files .. 8
2.4 Confirmation of installation .. 8
2.5 Directory structure after installation ... 9

3 Outline of DAQ-Middleware ... 12
3.1 Structure of components ... 13
3.2 Component states and its transition ... 14
3.3 Format of data transferred between components .. 15
3.4 Read & write of data at ‘InPort’ and ‘OutPort’ .. 16
3.5 Error handling .. 17

4 Component development environment .. 18
4.1 ‘newcomp’ command .. 18
4.2 How to write ‘Makefile’ ... 21

5 Preparation of development directory ... 24
6	 Confirmation of state transition using ‘Skeleton’ component .. 24
7 Example of creating simple components ... 28
8 Outline of data collection system developed in this document ... 32
9 Software emulator ... 32

9.1 Set-up .. 32
9.2 Launch .. 33
9.3 Data format of software emulator .. 33
9.4 Confirmation of data from emulator .. 33

10 ‘ SampleReader’ component development ... 34
10.1 Modification to ‘SampleReader.h’ .. 36
10.2 Modification to ‘SampleReader.cpp’ .. 38
10.3 Modification to Makefile ... 45

11 SampleMonitor component development ... 45
11.1 Creation of ‘SampleData.h’ ... 46
11.2 Modification to ‘SampleMonitor.h’ .. 47
11.3 Modification to ‘SampleMonitor.cpp’ ... 48
11.4 Modification to ‘SampleMonitorComp.cpp’ ... 53
11.5 Modification to Makefile ... 54

12 Launch and operation check ... 54
13 To make ‘Condition’ database of parameters ... 60

13.1 Histogram test using the ‘Condition’ database ... 64
14 How to use WebUI .. 67

14.1 Check the software package ... 67
14.2 How to operate ... 68

Appendix A About the libraries provided with DAQ-Middleware ... 71
Appendix B Update history of this manual ... 73

2011-02 ... 73
2011-06 ... 73
2011-10 ... 73

3	

Table of Contents

2012-04 ... 73
Appendix C Log generated on the set-up using ‘rpm’ and ‘yum’ commands 74
Appendix D Tips for the installation from source files ... 77
Appendix E Remote boot set-up .. 79

E.1 Network communication check .. 79
E.2 Installation of ‘xinetd’ ... 80
E.3 Set-up of ‘xinetd’ .. 80
E.4 Creating configuration file ... 81
E.5 System launch ... 81
E.6 Mechanism of remote boot ... 83

Appendix F How to install Scientific Linux .. 85
F.1 New installation (SL 5.x) ... 85
F.2 Adding the development environment later (SL 5.x) ... 86
F.3 New installation (SL 6.x) ... 87
F.4 Adding the development environment later (SL 6.x) ... 87
F.5 Setting up ‘SELinux’ and ‘iptables’ ... 88

Appendix G To command from command line to DAQ Operator .. 90

4	

1 About this manual

1 About this manual

This manual consists of the followings.
• How to prepare DAQ-Middleware 1.2.1 development environment (Section 2)
• A brief outline for DAQ-Middleware (Section 3)
• How to use the DAQ-Middleware 1.2.1 development environment (Section 4)
• Preparation of the development directory (Section 5)
• Confirmation of state transition using the ‘Skeleton’ components (Section 6)
• Data transfer between components using simple components (Section 7)
• How to create and start sample components (Section 8 and after)
• Parameter modification using the ‘Condition’ database (Section 13)

This manual describes how to develop components. It does not mention how to deploy them to
any (actual) data-collection systems.

For the design and implementation of DAQ-Middleware 1.2.1, as well as available classes
and methods, see the “DAQ-Middleware 1.1.0 Technical Manual” [2].

About DAQ components’ source code described in this manual

The source codes described in this manual will be placed under the directory ‘/usr/
share/daqmw/examples’, once DAQ-Middleware 1.2.1 is installed.
Please see the source codes under this directory if you wish to avoid typing in the codes
manually, or to find any missing part of the source codes of this manual.

The version of this manual

The version of this manual can be identified with ‘Date:’ on its cover page.

Set-up of DAQ-Middleware to ‘Scientific Linux 5.x or 6.x’

The set-up (of this middleware) to the ‘Scientific Linux 5 or 6’ can be done easily with the
‘yum’ command described in Section 2.2.

About DAQ-Middleware source files

You can download the DAQ-Middleware source files from the URL in Section 2.3 if their
binaries are not provided for in the OS, the versions don’t match, you want to modify the
libraries attached to the DAQ-Middleware, or for any other reason.

5	

2 Preparation of development environment

2 Preparation of development environment

The following three ways are currently available to prepare the DAQ-Middleware 1.2.1
development environment.

1. To use the ‘VMware Player’ image provided from the DAQ-Middleware development
group.

2. To install RPM binaries to the ‘Scientific Linux 5.x or 6.x’. (The binaries forboth ‘i686
(32 bits)’ and ‘x86_64 (64 bits)’ are provided).

3. To set up and install the dependents from their source files.

Below, these are described in the above order.

2.1 When using the ‘VMware Player’

The ‘Scientific Linux 5.8’ disk image is shown, which is playable at VMware which has
already been installed and set up the necessary software in this manual. With this image, you
can readily start to create DAQ-Middleware components.

Please download the ‘VMware Player’ from the ‘VMware’ site,
‘http://www.vmware.com/jp/products/player/’. There may be installation problems for the
latest ‘VMware Player 3.x’ depending on which CPU you use. To use the ‘VMware Player
3.x’, your CPU needs to support CMOV, PAE, TSC, FXSAVE commands. Most of the recent
CPUs should support these commands. The ‘3.x’ was confirmed uninstallable for computers
with Pentium M for its CPU, as they do not have PAE. Please download the ‘VMware Player
2.5.4’ from http://www.vmware.com/download/player/download.html, when ‘3.x’ is not
installable.

The ‘Scientific Linux 5.8’ disk image operatable on ‘VMware Player’ can be downloaded
from http://daqmw.kek.jp/vmplayer/sl-55-daqmw.zip. The user name ‘daq’ and password
‘abcd1234’ have been registered for general use. The ‘root’ password is also ‘abcd1234’.

This image is assigned with 1024MB for its memory capacity. Should more memory be
needed, select this disk image on the screen that appears after clicking the ‘VMware Player’
icon, and then adjust the memory settings by choosing “Edit the virtual machine set-up (仮想マ
シン設定の編集)” at the right, and select “Hardware” -> “Memory”, although there should not
be any memory problems with the default component systems created in this manual.

‘ROOT’ (http://root.cern.ch/), used in creating the histograms with the monitor component
developed in this manual, is placed in ‘/usr/local/root’. The value for the environment variable
‘ROOTSYS’ is set to ‘/usr/local/root’ when logging in as a ‘daq’ user.

This ‘VMware Player’ image is created by generating ‘Scientific Linux 5.8’ image, and then
the binaries are installed using the RPM described in the next Section.

6	

2 Preparation of development environment

2.2 How to install ‘RPM’ binaries to ‘Scientific Linux 5.x or 6.x’

The ‘Scientific Linux’ is one of the Linux distributions based on ‘RedHat Enterprise
Linux’. For details, see http://www.scientificlinux.org/ . For how to set up the ‘Scientific
Linux 5.x or 6.x’, see Appendix F.

2.2.1 Notice for those who have been using the DAQ-Middleware 2008.10 to 2009.10
Editions.

The distribution URL for ‘rpm’ has been changed since DAQ-Middleware 1.0.0. For
updates, please delete your old environment using the commands described in the next Section
before any new set-up. To delete, download the files from ‘http://daqmw.kek.jp/src/daqmw-
rpm’, and then type in the followings as a ‘root’ user.

chmod +x daqmw-rpm
./daqmw-rpm distclean

You may use ‘sh daqmw-rpm distclean’ instead of ‘chmod’.
(Notice) This file is a shell script to execute the following commands sequentially by
‘daqmw-rpm distclean’.

rpm -e kek-daqmiddleware-repo
rpm -e OpenRTM-aist
rm -fr /var/cache/yum/kek-daqmiddleware

2.2.2 How to set up

To install under the ‘Scientific Linux 5.x or 6.x’ environment the ‘RPM’ binaries provided
by the DAQ-Middleware development group, download the files from
‘http://daqmw.kek.jp/src/daqmw-rpm’, and then execute the following commands as ‘root’
user.

root# chmod +x daqmw-rpm
root# ./daqmw-rpm install

You may use ‘sh daqmw-rpm install’ instead of ‘chmod’.
(Notice) This file is a shell script to execute the following commands sequentially by ‘daqmw-
rpm install’.

root# rpm -ihv http://daqmw.kek.jp/rpm/el5/noarch/kek-daqmiddleware-repo-2-0.noarch.rpm
root# yum --disablerepo=’*’ --enablerepo=kek-daqmiddleware install DAQ-Middleware

The log generated on the execution of these commands is listed in Appendix C.
The ‘rpm’ packages to be installed with this ‘yum’ command are as follows. The download

file size of the ‘rpm’ package for 32 bits is 22MB, and that for 64 bits is 23MB. The total file

7	

2 Preparation of development environment

size after the installation is 78MB for 32 bits and 95MB for 64 bits.

• DAQ-Middleware-1.2.1
• OpenRTM-aist-1.0.0 (+ the patches not yet released)
• OmniORB server, library, development environment

– omniORB-doc-4.1.6
– omniORB-servers-4.1.6
– omniORB-utils-4.1.6
– omniORB-devel-4.1.6
– omniORB-4.1.6

• In ‘SL 5.x’, ‘xerces-c-2.7.0’ and ‘xerces-c-devel-2.7.0’. Also, in ‘SL 6.x’, ‘xerces-c-
3.0.1’ and ‘xerces-c-devel-3.0.1’.
• xalan-c-1.10.0 and xalan-c-devel-1.10.0

Any software (such as ‘ROOT’) necessary for the histogram in creating the monitor
component, needs to be separately installed. Also, the following package is required when
using the ‘Condition’ database described in Section 13.

• boost
Please install, using the ‘yum’ command etc. This package is included in the distributed items
of ‘Scientific Linux 5.x or 6.x’.

2.2.3 How to update using the ‘yum’ command

When a newer version of DAQ-Middleware is released due to any bug-fixing, additions of
examples, etc., they can be updated using the following commands (the same commands as in a
new installation).

wget http://daqmw.kek.jp/src/daqmw-rpm
chmod +x daqmw-rpm
./daqmw-rpm install

2.2.4 How to uninstall

For uninstallation, execute the following commands.

./daqmw-rpm distclean

To delete the files one by one, execute as per the following example.

8	

2 Preparation of development environment

rpm -qa –last|less

Then, the names of the installed ‘rpm’ packages are displayed in chronological order (the
most recent one is displayed first). You can use ‘rpm -e’ command to start deleting files
from the dependents sequentially.

2.3 How to install from source files

The DAQ-Middleware source files are available from ‘http://daqmw.kek.jp/src/’. Their file
names are in the form of ‘DAQ- Middleware-M.m.p.tar.gz’ where M, m and p are numbers.

To install from the source files, you need to download and expand, then ‘make; make
install’ them. To compile them, ‘OpenRTM-aist’ is required. Also, ‘OmniORB’ is needed to
run them. It is easier and recommended to download and install the binary files using ‘RPM’
or ‘yum’ when these commands are available for set-up, since preparing all the dependents
manually can be time consuming.

The compile tips for OS other than the ‘Scientific Linux’, ‘CentOS’, ‘RedHat Enterprise
Linux (5.x, 6.x)’, are summarized in Appendix D.

2.4 Confirmation of installation

When installing and setting up manually, you can confirm in the following ways, if the
development environment has been correctly set up.

Confirm if everything for the development environment is in place, using the ‘Skeleton’
component. The ‘Skeleton’ component source files should have been installed under the
directory ‘/usr/share/daqmw/examples/ Skeleton/’, once the set-up of the DAQ-Middleware
1.2.1 was completed.

Confirm if everything for the development environment is in place as follows.

% cp -r /usr/share/daqmw/examples/Skeleton . (a dot (“.”) needs to be added to the end of line)
% cd Skeleton
% ls
Makefile Skeleton.cpp Skeleton.h SkeletonComp.cpp
% make

If no errors occur, the executable file ‘SkeletonComp’ should be created. When the ‘make’
command causes an error and the process is abnormally terminated, find the cause and solve
the problem. The solutions vary for different error contents*1.

*1 For example, when the compile fails in relation to ‘libuuid’ on ‘Scientific Linux 5.x’, ‘e2fsprogs-devel’ package needs
to be installed from the distribution package of ‘Scientific Linux 5.x’.

9	

2 Preparation of development environment

2.5 Directory structure after installation

You can check, as follows, what files have been installed after the installation of the DAQ-
Middleware in case you installed from ‘RPM’ or used the ‘VMware Player’.

rpm -ql DAQ-Middleware

If you installed from the source files, there is no easy method to do this.

Regardless of using the ‘VMware Player’ or setting-up with ‘rpm’ on the native Linux
environment, the directory structure of DAQ-Middleware becomes as follows.

/usr/bin

The following commands manually launchable by the user, are placed here. Details
on how to use each of these commands will be described later when needed.
run.py, run.pyc, run.pyo

These are the commands to read out the system configuration file and start the
components scripted therein, and then launch ‘DaqOperator’ at the end. It is
written in ‘Python’. ‘run.pyc’ and ‘run.pyo’ are the byte compile file of
‘run.py’ and its optimized byte compile file, respectively.

daqmw-rpm
This is the utility to set up the DAQ-Middleware with ‘RPM’. For directions on
how to use it, see Section 2.2.1 and 2.2.2. This command will be deleted when
executing the uninstallation of DAQ-Middleware by ‘rpm -e DAQ-Middleware’.
You can download this command from ‘http://daqmw.kek.jp/src/daqmw-rpm’
when you need it for re-setup, etc.

condition_xml2json and xml2json-with-attribute.xslt
In the DAQ-Middleware, the component parameters varying for each run are
described in the ‘Condition’ database file. This description is done in ‘XML’.
Each of the components reads this database and acquires the parameters.
Practically, the XML description is converted to the ‘JSON’ format, then, to
be read out by each component, since parsing the raw XML code is time-
consuming. For the conversion from ‘XML’ to ‘JSON’ format,
‘condition_xml2json’ is used. ‘xml2json-with-attribute.xslt’ is the ‘XSL’
stylesheet needed for the conversion.

10	

2 Preparation of development environment

newcomp
This is the command to generate the templates for the files needed to create a new
component. Its details are described in Section 4.1.

/usr/include/daqmw
Basic class files etc. for DAQ-Middleware are placed in this directory. Also, the API
include files for the library mentioned below, are in here.

/usr/include/daqmw/idl
The directory for IDL files.

/usr/lib/daqmw (32bits) or /usr/lib64/daqmw (64bits)
The files to be used in creating the DAQ components, are in this directory. Here is the
socket library and the ‘Condition’ related library (‘json_spirit’). In ‘Makefile’ to
compile the components, ‘comp.mk’ placed in the below-mentioned
‘/usr/share/daqmw/mk/’ can designate this directory as ‘DAQMW_LIB_DIR’. With
this function, the component source files can be shared between 32 and 64 bits. For
example, it can be used as follows.
LDLIBS += -L$(DAQMW_LIB_DIR) -lSock

For ‘comp.mk’, see Section 4.2.
A summary of the libraries installed in this directory as well as some notices for their
use, are in Appendix A for your reference.

/usr/libexec/daqmw/DaqOperator
Here are the executable files of the DAQ Operator components. Their source files are
under ‘/usr/share/daqmw/ DaqOperator/’.

/usr/share/daqmw/conf
The templates for the DAQ-Middleware settings-files (configuration files, and
condition files) are in this directory. The configuration files used for running the
‘SampleReader’ and ‘SampleMonitor’ in this document, are named ‘sample.xml’ and
placed under this directory. The ‘sample.xml’ cannot be used as is, dependent upon
the directory of the executable files. For directions on how to change this, see Section
12.

/usr/share/daqmw/DaqOperator
A set of source codes for the DAQ Operator components are here. When you want to
place all the component source files necessary for the DAQ system in one directory,
copy the files from this directory concerning the DAQ operator component.

/usr/share/daqmw/docs

The documents for the DAQ-Middleware are in this directory.

11	

2 Preparation of development environment

/usr/share/daqmw/etc

The remote boot function is needed to compose the DAQ system using multiple
computers. The template files for realizing the remote boot with ‘xinetd’ are in this
directory. For the set-up of the remote boot, see Appendix E.

/usr/share/daqmw/examples
Example components are grouped in this directory. The source files for the
components (‘SampleReader’ and ‘SampleMonitor’) to be developed in this document,
have such components’ names and are placed under this directory.

/usr/share/daqmw/mk

The commands always fixed for simplifying ‘Makefile’ description, are grouped in
‘comp.mk’ under this directory. For directions on how to script ‘Makefile’, see
Section 4.2.

12	

2 Preparation of development environment

Fig.1 DAQ-Middleware overview

3 Outline of DAQ-Middleware

The architecture of the DAQ-Middleware, the specification of the components, the format
of the data transferred between the components, etc. are described in the “DAQ-Middleware
1.1.0 Technical Manual” [2]. Please read through these descriptions before starting your
component development. This Section summarizes the necessary knowledge in coding the
components.

Fig. 1 shows an overview of the DAQ-Middleware structure. In the DAQ-Middleware,
multiple DAQ components (below, simply referred to as ‘components’) carry out data
collection. The ‘DaqOperator’ controls those components. The ‘DaqOperator’ handles the
run-control by sending to each component the command of connection, data collection start
and finish. The ‘DaqOperator’ reads the system configuration file scripted in ‘XML’, and then
understands the system information, such as which components there are, which components
are to be connected to which, etc. The upper system (such as Framework) commands
‘DaqOperator’. The ‘DaqOperator’ has two modes. One is the web mode where the
‘DaqOperator’ receives the commands through HTTP, and the other is the console mode to
receive the keyboard-input commands. In this manual, we command ‘DaqOperator’ through
the console mode. The parameters varying for each run, are scripted in ‘XML’ as a condition
file.

l Designate the
component to be used

l Component indirect
connection info

l Parameters

l ● Machine parameters
l ● Online monitor parameters

13	

2 Preparation of development environment

Fig. 2 Logic implementation

Fig.3 State chart

Since ‘XML’ parsing is a high load process, the file scripted in ‘XML’ is pre-converted to
‘JSON’ format, and then each of the components reads the re-formatted file to acquire the
parameters.

3.1 Structure of components

Fig. 2 shows the structure of the components. In the DAQ-Middleware, multiple

components communicate with each other to collect data. The first item on the left in fig.2
represents the parts already provided in the DAQ-Middleware. In the DAQ-Middleware, the
‘InPort’ is used for data reception and ‘OutPort’ is used for data transmission. The data sent
from the upstream component come in through the ‘InPort’. The data to be sent to the
downstream components is written in the ‘OutPort’. The ‘OutPort’ – ‘InPort’ communication
function between different components is provided by the DAQ-Middleware. Also, the
components have the ‘ServicePort’, used for run-control command reception from the
‘DaqOperator’, as well as for status information transmissions.

14	

2 Preparation of development environment

Function name State transition / State Programming Examples

daq_configure()

LOADED → CONFIGURED
Receive parameter (Read-out module’s IP
address, port no.) list from ‘DaqOperator’ to set
the values

daq_start() CONFIGURED → RUNNING Create socket to ‘connect’ read-out module

daq_run() RUNNING Read data from read-out module and send it to
a subsequent component

daq_stop() RUNNING → CONFIGURED ‘disconnect’ from read-out module
Table 1 Programming example for ‘Gatherer’

Function name State transition / State Programming Examples

daq_configure() LOADED → CONFIGURED
Receive parameter list from ‘DaqOperator’ to
set the values

daq_start() CONFIGURED → RUNNING Prepare histogram data
daq_run() RUNNING Read data from upstream component and codes

it. Then, files the data into histogram data to
regularly draw a histogram.

daq_stop() RUNNING → CONFIGURED Draw a histogram with the final histogram data

Table 2 Programming example for ‘Monitor’

The component developer will program the logic to be realized. For example, the logic of the
component to read data from the read-out module and send it to the subsequent component, is
reading out data from read-out module via socket and writing it in the outport. Once the data
is written in the outport, it is automatically sent to the subsequent component. So, the
component developer does not need to implement this part bymanually. There is another
logic example which reads data that came in ‘InPort’ and then draws a histogram.

3.2 Component states and its transition

Each component is in any of the states shown in Fig. 3 State Chart, during its operation.

As such the states, ‘LOADED’, ’CONFIGURED’, ’RUNNING’, ’PAUSED’ are defined. For
example, the state immediately after the executable file is loaded to the computer and the
component gets started to run as a process, is ‘LOADED’. It keeps the ‘LOADED’ state until
it receives the ‘CONFIGURE’ command from the ‘DaqOperator’. When the ‘CONFIGURE’
command comes in, the state is transitioned to ‘CONFIGURED’. On such transitions, the
function defined for it will be executed only once. For example, on the transition from
‘LOADED’ to ‘CONFIGURED’, ‘daq_configure()’ is executed.

15	

2 Preparation of development environment

While in one state, the function corresponding to the state is repeatedly called. For
example, ‘daq_run() ‘ is called on the ‘RUNNING’ state. After one ‘daq_run()’ finishes
and the ‘STOP’ command has not been input, the ‘daq_run()’ will be called again. After
that, ‘daq_run()’ will be called repeatedly until the ‘STOP’ command is received. The
function called during each state, needs to be programmed such that the function never
blocks the process permanently. This is because a permanent block will hamper the
reception of the commands issued to make the transition to the next state. For example,
when the ‘daq_run()’ reads data via socket, implementing a time-out function to the socket
to avoid the permanent block will be necessary*2.

The components are realized with the implementation of these functions. As examples,
the items to be implemented in the component (gatherer) reading out data from the read-out
module are shown in table 1. Also, an example of the component (monitor) to create a
histogram, and then display it on the screen, is shown in Table 2. These are just examples,
and do not always need to be implemented.

3.3 Format of data transferred between components

Fig. 4 shows the format of the data transferred between each component. The component
header and footer in this Fig. have nothing to do with the header and footer that are (may be)
in the data that the read-out module sends in. The formats of the component header and
footer are shown in Fig. 5.

When an upstream component sends data to a downstream component, the byte size of the
event data to be sent is recorded in ‘EventByteSize’ in the header. The downstream
component that received the data, verifies if it has anything missing in data-reading, by
comparing the received actual event data size and ‘EventByteSize’ in the header. Also, the
upstream component sets the number of times it sends data to the downstream component, to
‘sequence number’ in the footer. The downstream component that received the data, records
how many receptions there were from upstream, and then compares it with ‘sequence
number’ in the footer. This enables the verification of any failure in data-receiving.

The setter and getter methods for ‘EventByteSize’ and ‘sequence number’, include
‘set_event_byte_size()’, ‘inc_sequence_num()’ and ‘get_sequence_num()’. All such methods
are described in “DAQ Middleware 1.1.0 Technical Manual” [2].

The event data format needs to be decided by the user.

*2 ‘read()’ of the socket will be permanently blocked by default when there is no data to read.

16	

2 Preparation of development environment

Component
Header

Compone
nt Footer

......

Event Data

Fig. 4 Format of data transferred between components. For the format of component
header and footer, see Fig. 5.

Component Header

Header
Magic
(0xe7)

Header
Magic
(0xe7)

Reserved

Reserved

Data
ByteSize
(24:31)

Data
ByteSize
(16:23)

Data
ByteSize
(8:15)

Data
ByteSize
(0:7)

0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63

Component Footer

0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63

Fig. 5 Component header and footer format

3.4 Read & write of data at ‘InPort’ and ‘OutPort’

Reading and writing of the data at ‘InPort’ and ‘OutPort’ are described with an example of
a‘Sample’ component having only one ‘InPort’ and ‘OutPort’ each.

In ‘Sample.h’, the buffer used for each ‘InPort’ and ‘OutPort’ is defined as follows.

private:
TimedOctetSeq m_in_data; // InPort
InPort<TimedOctetSeq> m_InPort;

TimedOctetSeq m_out_data; // OutPort
OutPort<TimedOctetSeq> m_OutPort;

‘m_in_data’ and ‘m_out_data’ are the constructors for ‘Sample.cpp’ and become the data
buffer for ‘InPort’ and ‘OutPort’.

Sample::Sample(RTC::Manager* manager)
: DAQMW::DaqComponentBase(manager),

m_InPort("sample_in", m_in_data),
m_OutPort("sample_out", m_out_data),

The data that has arrived at ‘InPort’ from the upstream component, is read by
‘m_InPort.read()’. The return value is either ‘true’ or ‘false’. When ‘false’, the state of
‘InPort’ is checked by ‘check_inPort_status(m_InPort)’. Normally, you should code the
component to retry when the ‘check_inPort_status(m_InPort)’ is ‘BUF_TIMEOUT’.
When ‘BUF_FATAL’ is given, the occurrence of a fatal error should be reported to the

Footer
Magic
(0xcc)

Footer
Magic
(0xcc)

Reserved

Reserved

sequence
number
(24:31)

sequence
number
(16:23)

sequence
number
(8:15)

sequence
number
(0:7)

17	

2 Preparation of development environment

‘DaqOperator’ using ‘fatal_error_report()’. If data-reading was done normally, the data enter
the ‘m_in_data.data’ array. To obtain the read length, ‘m_in_data.data.length()’ is used.

To send the data to the downstream component, write it in the ‘OutPort’. First, the length
of the data to be sent is specified by ‘m_out_data. data.length(data length). The data length
unit is byte. Next, the data to send is written in ‘m_out_data.data’ array. Then,
‘m_OutPort.write()’ is executed. The return value of ‘m_OutPort.write()’ is either ‘true’ or
‘false’. ‘true’ indicates a normal data transmission. When ‘false’, the state of ‘OutPort’ is
confirmed using ‘check_outPort_status(m_OutPort)’. If ‘check_outPort_status()’ gives
‘BUF_TIMEOUT’, you normally need to code the component to retry. When ‘BUF_FATAL’
is given, the occurrence of a fatal error should be reported to the ‘DaqOperator’ using
‘fatal_error_report()’.

For more details, see the “DAQ-Middleware 1.1.0 Technical Manual” [2].

3.5 Error handling

When a fatal error occurs with the component, it needs to be reported to the
‘DaqOperator’ using ‘fatal_error_report()’. For details about ‘fatal_error_report()’, see the
“DAQ-Middleware 1.1.0 Technical Manual” [2]. The condition for the fatal error is
determined by the component developer. The fatal error will be handled by the upper system
or human.

18	

4 Component development environment

4 Component development environment

4.1 ‘newcomp’ command

When starting your component development, you may rewrite the ‘Skeleton’ components
after copying them as in Section 2.4. However, when it comes to assigning a proper name to
the component, you will encounter some file-naming such as include-guard name or
component name, according to general rules. So, the ‘newcomp’ command is provided to do
this automatically. It is in ‘/usr/bin/newcomp’. Specifying the name of the component to
develop as an argument for this command, will create, under the current directory, a directory
with the specified component name, and then the following files thereunder (e.g. an example
of ‘newcomp MyMonitor’ is shown):

• Makefile

• MyMonitor.h

• MyMonitor.cpp

• MyMonitorComp.cpp

% newcomp MyMonitor
% ls
MyMonitor
% cd MyMonitor
% ls
Makefile MyMonitorComp.cpp MyMonitor.cpp MyMonitor.h

The part ‘MyMonitor’ in the filename is replaced by the component name specified as the
argument for ‘newcomp’.

The above logical content is the same as that of the ‘Skeleton’ component besides the
include-guard name in ‘Makefile’ is ‘MYMONITOR’ and the component definition part is
‘mymonitor’. You can ‘make’ it as is. So, using the ‘make’ command confirms if the
development environment has been correctly set*3.

Among these files, ‘MyMonitorComp.cpp’ does not need any modification unless you
want to put something in the ‘main()’ function for its program structure. For
the‘SampleMonitor’ component created in this document, ‘ROOT’ is used to draw a
histogram. To generate ‘TApplication’ object in the ‘main()’ function in this component, the
‘SampleMonitorComp.cpp’ is modified.

The methods such as ‘daq_start()’ and ‘daq_run()’ are implemented in
‘MyMonitor.cpp’ to create the component.

*3 Executing ‘make’ command creates ‘autogen’ directory wherein the automatically generated files are placed. In component
development, those files in ‘autogen’ directory do not need any modification.

19	

4 Component development environment

In terms of data flow between components, the component that sends data to the other

components but does not receive them from the others, is called the ‘Source’-type component.
The component that receives data from other components but does not send them to the others
is called the ‘Sink’-type component. The ‘newcomp’ command has options to delete or add the
‘InPort’ and ‘OutPort’ according to the types of components to develop. Available component
types will be shown by displaying the help message of the ‘newcomp’ command with ‘newcomp
–h’.

$ newcomp -h
Usage: newcomp [-f] [-t component_type] NewCompName
(omitted…)
You may specify component type as -t option. Valid component types are:

null
sink
source
(omitted hereafter…)

The above ‘null’ type displayed by ‘newcomp –h’ is for the empty template files generated by
most of the methods. When not specifying the type with ‘-t’, the files that are the same as the
‘null’ type will be generated. When creating the component which is not ‘Source’-type nor
‘Sink’-type, start your development with this ‘null’-type (or not specifying the type by ‘-t’) (The
generated files do not contain anything other than all of the (empty) methods to be implemented.)

To create a ‘Source’-type component, execute the following.
% newcomp -t source MySampleReader

Replace the above ‘MySampleReader’ with any component name you want to use. Also, to
create ‘Sink’-type component, execute the following.

% newcomp -t sink MySampleMonitor

Replace the above ‘MySampleMonitor’ with any component name you want to use.

4.1.1 ‘Source’-type logic

 ‘newcomp -t source MyReader’ defines the followings as a template in ‘MyReader.h’.

1 private:
2 TimedOctetSeq m_out_data;
3 OutPort<TimedOctetSeq> m_OutPort;
4

5 private:
6 int daq_dummy();
7 int daq_configure();
8 int daq_unconfigure();

20	

4 Component development environment

9 int daq_start();

10 int daq_run();
11 int daq_stop();
12 int daq_pause();
13 int daq_resume();
14

15 int parse_params(::NVList* list);
16 int read_data_from_detectors();
17 int set_data(unsigned int data_byte_size);
18 int write_OutPort();
19

20 static const int SEND_BUFFER_SIZE = 4096;
21 unsigned char m_data[SEND_BUFFER_SIZE];
22 unsigned int m_recv_byte_size;

The 3rd and 2nd Lines from the bottom are the buffer (template) used for data-reading from the
read-out module. The following template part will be generated in ‘MyReader.cpp’ so that the
data-reading logic can be written therein.

1 int MyReader::read_data_from_detectors()
2 {
3 int received_data_size = 0;
4 /// write your logic here
5 return received_data_size;
6 }

The specification of ‘read_data_from_detectors()’ assumed here, is as follows.

• Return value is the number of bytes read out
• Data read out are put in ‘m_data’.

Since this is just a template, components do not always need to be implemented as above.

 4.1.2 ‘Sink’-type logic

‘newcomp -t sink MyMonitor’ defines the following template in ‘MyMonitor.cpp’.

1 check_header_footer(m_in_data, recv_byte_size); // check header and footer
2 unsigned int event_byte_size = get_event_size(recv_byte_size);
3

4 ///////////// Write component main logic here. /////////////
5 // online_analyze();
6 //
7

8 inc_sequence_num(); // increase sequence num.
9 inc_total_data_size(event_byte_size); // increase total data byte size

In this template, ‘online_analyze()’ function on Line 5 assumes an arrangement wherein a
process to draw histogram, etc. is written. Among the data sent from the upstream component,
the user data length excluding component header and footer is put in ‘event_byte_size’, in byte
size. The content of the user data starts from ‘m_in_data.data [HEADER_BYTE_SIZE]’ to
‘m_in_data.data[HEADER_BYTE_SIZE + event_byte_size - 1]’ (See fig. 4). The logics

21	

4 Component development environment

such as drawing a histogram from this data can be implemented. Since this is just a template,
components do not always need to be implemented like this.

4.2 How to write ‘Makefile’

The ‘Makefile’ generated with ‘newcomp’ command, is shown below (An example with
‘newcomp MyMonitor’):

COMP_NAME = MyMonitor

all: $(COMP_NAME)Comp

SRCS += $(COMP_NAME).cpp
SRCS += $(COMP_NAME)Comp.cpp

sample install target

MODE = 0755
BINDIR = /tmp/mybinary

install: $(COMP_NAME)Comp
mkdir -p $(BINDIR)
install -m $(MODE) $(COMP_NAME)Comp $(BINDIR)

include /usr/share/daqmw/mk/comp.mk

Since the processes of ‘MyMonitor.cpp’ and ‘MyMonitorComp.cpp’ are written in
‘/usr/share/daqmw/mk/comp.mk’, they do not need to be added to ‘Makefile’ manually (If added,
an error occurs).

When implementing the component only with the files generate by the ‘newcomp’ command,
‘Makefile’ does not need any modification. With the addition of source files (*.cpp), additional
SRCS variables need to be written in Makefile as below (An example for the addition of
‘ModuleUtils.cpp’ and ‘FileUtils.cpp’):

1 COMP_NAME = MyMonitor
2

3 all: $(COMP_NAME)Comp
4

5 SRCS += $(COMP_NAME).cpp
6 SRCS += $(COMP_NAME)Comp.cpp
7 #
8 # An example of adding ModuleUtils.cpp and FileUtils.cpp.
9 #

10 SRCS += ModuleUtils.cpp
11 SRCS += FileUtils.cpp

22	

4 Component development environment

12

13 # sample install target
14 #
15 # MODE = 0755
16 # BINDIR = /tmp/mybinary
17 #
18 # install: $(COMP_NAME)Comp
19 # mkdir -p $(BINDIR)
20 # install -m $(MODE) $(COMP_NAME)Comp $(BINDIR)
21

22 include /usr/share/daqmw/mk/comp.mk

Line 10 and 11 are for the additional files. Otherwise, you can specify the object file names put
in OBJS variables.

OBJS += ModuleUtils.o
OBJS += FileUtils.o

You cannot specify a same file to SRCS and OBJS variables as follows (The compile will fail
due to symbol overloading):

(This is a no good example.)
SRCS += FileUtils.cpp
OBJS += FileUtils.o

Also, notice that, with a source filename (*.cpp) wrongly specified to the OBJS variable,
‘make clean’ deletes the source file.

When the generation of ‘FileUtils.o’ requires ‘FileUtils.h’ and ‘FileUtils.cpp’, writing the
dependency as follows, enables the compile only with modified source files but not compiling
the entire source files, upon any modification in ‘FileUtils.h’ and ‘FileUtils.cpp’.

FileUtils.o: FileUtils.h FileUtils.cpp

Since the dependency of the cpp file generated by the ‘newcomp’ command (for example, the
dependency of ‘MyMonitor.o’ and ‘MyMonitorComp.o’ upon ‘newcomp MyMonitor’) is
already written in ‘comp.mk’, it does not need to be manually specified.

In ‘comp.mk’, ‘-I.’, ‘-I/usr/include/daqmw’ and ‘-I/usr/include/daqmw/idl’ are added as
CPPFLAGS. You do not need to add ‘-I.’ for reading ‘*.h’ files in the directory where you
execute the ‘make’ command. When reading include files in the directories other than these, and
‘/usr/include’, ‘CPPFLAGS +=’ is used like ‘CPPFLAGS += -I/path/to/myheader_dir’.

Also, when you want to use external libraries, add them to ‘LDLIBS’ variables. Some
addition should be made to ‘Makefile’ as follows when, for example, using a library ‘mylibrary’
with its include file under ‘/usr/local/include’ and its library file ‘/usr/local/lib/libmylibrary.so’.
Line 13 and 14 are the added ones.

23	

4 Component development environment

1 COMP_NAME = MyMonitor
2

3 all: $(COMP_NAME)Comp
4

5 SRCS += $(COMP_NAME).cpp
6 SRCS += $(COMP_NAME)Comp.cpp
7

8 #
9 # Include files are in ‘/usr/local/include’.

10 # Library files are in ‘/usr/local/lib/libmylibrary.so’
11 # To use the library, add them to’Makefile’ as follows.
12 #
13 CPPFLAGS += -I/usr/local/include
14 LDLIBS += -L/usr/local/lib -lmylibrary
15

16 # sample install target
17 #
18 # MODE = 0755
19 # BINDIR = /tmp/mybinary
20 #
21 # install: $(COMP_NAME)Comp
22 # mkdir -p $(BINDIR)
23 # install -m $(MODE) $(COMP_NAME)Comp $(BINDIR)
24

25 include /usr/share/daqmw/mk/comp.mk

The directory (‘/usr/lib/daqmw’ for 32 bits SL, and ‘/usr/lib64/daqmw’ for 64 bits SL) for the
library (socket library, json library) provided by DAQ-Middleware, is referable as
‘DAQMW_LIB_DIR’. Since the directory (/usr/include/daqmw) with the include files in it, is
already added to CPPFLAGS as mentioned above, you do not need to make such addition
manually.

An execution of the ‘make’ command creates the ‘autogen’ directory wherein automatically
generated files are placed. Any modification to the files in the ‘autogen’ directory is not
necessary in the component development.

Components can be developed in any directory although the ‘makefile’ subroutine utility
(comp.mk) included in DAQ-Middleware is premised upon 1-directory-1component basis.

Use ‘.cpp’ for the source file extension and ‘.h’ for the include file extension when using
‘comp.mk’ subroutine attached to DAQ-Middleware. Compiling will not be done correctly
using any other extensions (e.g. ‘.cc’ or ‘.hh’).

24	

5 Preparation of development directory

5 Preparation of development directory

This Section describes the premise that the development system is logged-in by the ‘daq’
user manually. Since multiple components are to be created here, a development directory
‘/home/daq/MyDaq’ is created that can contain them all.

% cd
% mkdir MyDaq
% cd MyDaq
% pwd
/home/daq/MyDaq

6	 	 Confirmation of state transition using ‘Skeleton’ component

Here, we confirm the state transition using the ‘Skeleton’ component. The ‘Skeleton’

component is the one wherein all the methods necessary for the component to run are
implemented with their contents empty. Move to the development directory created in the
previous Section, and then create the source files for the ‘Skeleton’ component using the
‘newcomp’ command (The generated source files are the same as those under
‘/usr/share/daqmw/examples/Skeleton’). Move to the newly created ‘Skeleton’ directory, and
execute ‘make’.

% cd
% cd MyDaq
% newcomp Skeleton
% ls Skeleton
Makefile SkeletonComp.cpp Skeleton.cpp Skeleton.h
% make
(omitted…)
% ls -l SkeletonComp
-rwxrwxr-x 1 daq daq 281923 Apr 1 09:00 SkeletonComp

Subsequently, copy the configuration file for running this component.

% cd
% cd MyDaq
% cp /usr/share/daqmw/conf/skel.xml .

Then, open ‘skel.xml’ in your editor to check ‘execPath’. The ‘execPath’ needs to
designate the executable file the ‘SkeletonComp’ created above. When exactly following
this example, there should be no modification needed. With the ‘SkeletonComp’ in a
different directory, ‘execPath’ must be edited so that the path for the file is specified in its
full path. The code part of ‘/usr/share/daqmw/conf/skel.xml’ is shown below.

1 <configInfo>
2 <daqOperator>
3 <hostAddr>127.0.0.1</hostAddr>
4 </daqOperator>

25	

6	 	 Confirmation of state transition using ‘Skeleton’ component

5 <daqGroups>
6 <daqGroup gid="group0">
7 <components>
8 <component cid="SkeletonComp0">
9 <hostAddr>127.0.0.1</hostAddr>

10 <hostPort>50000</hostPort>
11 <instName>Skeleton0.rtc</instName>
12 <execPath>/home/daq/MyDaq/Skeleton/SkeletonComp</execPath>
13 <confFile>/tmp/daqmw/rtc.conf</confFile>
14 <startOrd>1</startOrd>
15 <inPorts>
16 </inPorts>
17 <outPorts>
18 </outPorts>
19 <params>
20 </params>
21 </component>
22 </components>
23 </daqGroup>
24 </daqGroups>
25 </configInfo>

For more details about the tags, see the “DAQ-Middleware 1.1.0 Technical Manual” [2]. The
‘execPath’ designates the full path of the component executable file. Since this component is not
to be connected to any other components, the ‘InPorts’ and ‘OutPorts’ are empty.

As described in the “DAQ-Middleware 1.1.0 Technical Manual” [2], the ‘DaqOperator’ takes
control of the DAQ system in the DAQ-Middleware. The ‘DaqOperator’ commands the
component connections, as well as the start & finish of the data collection, while the commanded
components must be launched in other ways beforehand (The ‘DaqOperator’ does not launch each
component). There are some ways to boot each component, including a network boot with
‘xinetd’ launched from the command line of ‘shell’. Here, the local boot function of the
‘/usr/bin/run.py’ command included in the DAQ-Middleware, boots the system.

When option-l (l for lambda, not a number ‘one’) is specified with ‘run.py’, ‘run.py’ reads the
configuration file specified in the last argument, and then acquires the path name of the
component to be started. After it starts the component in that path on the local computer, it
launches the ‘DaqOperator’ on the local computer. Also, ‘run.py’ with the ‘-c’ option specified,
launches the ‘DaqOperator’ in the console mode. The ‘DaqOperator’ launched in the console
mode, reads the commands from the user’s keyboard. Also, the number of data bytes handled by
each component is regularly displayed (Each component regularly reports to the ‘DaqOperator’
the number of data bytes it has processed). Since the ‘Skeleton’ component has no data flow, the
number of data bytes remains 0.

% cd
% cd MyDaq
% run.py -c -l skel.xml
(Otherwise, the option can be integrally specified as ‘run.py –cl skel.sml’.)

26	

6	 	 Confirmation of state transition using ‘Skeleton’ component

 ‘run.py’ displays the following for a while after its launch (This waiting time varies for
different CPU performance although roughly 4 sec).

Command: 0:configure 1:start 2:stop 3:unconfigure 4:pause 5:resume

RUN NO: 0
start at: stop at:

GROUP:COMP_NAME EVENT SIZE STATE COMP STATUS

group0:SkeletonComp0: 0 LOADED WORKING

As previously mentioned, the ‘DaqOperator’ outputs these characters, and it waits for your
command key input. In this system, the component is only the ‘Skeleton’, and the ‘STATE’
column shows its current state ‘LOADED’. Available commands are displayed in the first
line ‘Command:’. The Command input is carried out by pressing a corresponding number
key. State transition needs to be done one by one sequentially. For example, pressing ‘start’
in this ‘LOADED’ state will be judged as an inadequate input. With the command input, the
‘DaqOperator’ sends transition commands to each component.

Confirm the ‘STATE’ column as ‘LOADED’ on the above screen. Pressing 0 to
‘configure’, changes the ‘STATE’ column to ‘CONFIGURED’. When subsequently pressing
1 to ‘start’, an input of the run-number is requested. So, input any proper run-number (like 1).
Then, ‘STATE’ column changes to ‘RUNNING’. When subsequently pressing 2 to ‘stop’,
the ‘STATE’ column changes to ‘CONFIGURED’.

Pressing ‘Ctrl-C’ after ‘stop’ping the component with a press of 2, sends ‘SIGINT’ to the
‘DaqOperator’ to terminate itself. The ‘SIGINT’ is sent also to the component started by
‘run.py’ at the same time as to the ‘DaqOperator’ (Because the ‘DaqOperator’ and each
component launched by ‘run.py’ belong to the same process group). Since usually a
component ‘exit’s earlier than the ‘DaqOperator’, it still attempts several connections to the
component, the following line will be displayed on the screen for the same amount of times as
the number of components after pressing ‘Ctrl-C’.

ERROR: : cannot connect

‘DaqOperator’ will terminate after a while.

The standard output and standard error output of the component launched by ‘run.py’ will
be saved under ‘/tmp/daqmw/log. Component program name’. In this case, it is saved in
‘/tmp/daqmw/log.SkeletonComp’.

■Confirmation of state transition of ‘Skeleton’ component

Now, we try to confirm the component’s state transition with a modification to the
‘Skeleton’ component. In all the component source files under ‘/usr/
share/daqmw/examples/’, ‘m_debug’ variable is defined. Using this enables, or stops the
debug message outputs. The program is written as …

27	

6	 	 Confirmation of state transition using ‘Skeleton’ component

if (m_debug) {
std::cerr << "debug message here" << std::endl;

}

First, rewrite the initialization part of the ‘Skeleton’ component constructor (in
‘Skeleton.cpp’) as follows.

Skeleton::Skeleton(RTC::Manager* manager)
: DAQMW::DaqComponentBase(manager),

m_InPort("skeleton_in", m_in_data),
m_OutPort("skeleton_out", m_out_data),

m_in_status(BUF_SUCCESS),
m_out_status(BUF_SUCCESS),

m_debug(true) changed from // false to true

Also, the debug message of ‘onExecute’ regularly called is not important now and so
commented out.

RTC::ReturnCode_t Skeleton::onExecute(RTC::UniqueId ec_id)
{

// std::cerr << "*** onExecute¥n"; // Commented out for killing the output.
daq_do();

return RTC::RTC_OK;

}

Further, since ‘daq_dummy()’ in its original form has no debug message, it is added here.

int Skeleton::daq_dummy()
{

std::cerr << "Skeleton::dummy" << std::endl; // Addition

return 0;
}

Now, ‘make’ this, and then, as in the previous Section, start the ‘Skeleton’ component from
‘run.py’ by ‘run.py –cl skel.xml’ to launch the ‘DaqOperator’ in console mode. The
component log will be created under ‘/tmp/daqmw/’. The ‘Skeleton’ component’s log is
created in ‘/tmp/daqmw/log.SkeletonComp’. So, with a reference to this using ‘tail –f’,
command ‘CONFIGURE’ etc. to ‘DaqOperator’ in order to confirm that the methods are
about to transit, or the methods repeated during the state are actually called.

28	

7 Example of creating simple components

7 Example of creating simple components

To be able to transfer data between components, we create simple components.
The components to be created are the ‘Source’-type component (referred as ‘TinySource’

component, here) and the ‘Sink’-type component (referred as ‘TinySink’ component, here)
created by ‘newcomp’. The ‘TinySource’ is the component that creates data by itself and sends
it out. Also, the ‘TinySink’ is the component that outputs the received data to the standard error
output in hexadecimal. Once the DAQ-Middleware 1.2.1 is installed, the source files for
‘TinySource’ and ‘TinySink’ will be placed in ‘/usr/share/daqmw/ examples/TinySource’ and
‘/usr/share/daqmw/examples/TinySink’, respectively. The configuration file to be used is
‘/usr/share/daqmw/conf/tiny.xml’. Execute the followings.

% cd
% cd MyDaq
% newcomp -t source TinySource
% newcomp -t sink TinySink
% cp /usr/share/daqmw/conf/tiny.xml .

Then, modify ‘TinySource’ and ‘TinySink’ as below.

■Modification to TinySource.cpp

1 int TinySource::read_data_from_detectors()
2 {
3 int received_data_size = 0;
4 /// write your logic here
5 usleep(500000); // Addition
6 for (int i = 0; i < SEND_BUFFER_SIZE; i++) { // Addition
7 m_data[i] = (i % 256); // Addition
8 } // Addition
9 received_data_size = SEND_BUFFER_SIZE; // Addition

10 /// end of my tiny logic
11

12 return received_data_size;
13 }

Numbers are simply embedded into the buffer secured in ‘TinySource.h’. Since looping this too
frequently is troublesome, Line 5 ‘sleep’s for 0.5 sec.
■Modification to TinySink.h

1 private:
2 int daq_dummy();
3 int daq_configure();
4 int daq_unconfigure();
5 int daq_start();
6 int daq_run();
7 int daq_stop();

29	

7 Example of creating simple components

8 int daq_pause();
9 int daq_resume();

10

11 int parse_params(::NVList* list);
12 int reset_InPort();
13

14 unsigned int read_InPort();
15 //int online_analyze();
16 static const unsigned int RECV_BUFFER_SIZE = 4096; // Addition
17 unsigned char m_data[RECV_BUFFER_SIZE]; // Addition
18 BufferStatus m_in_status;
19 bool m_debug;

At Line 16 and 17, the buffer to copy the data at ‘InPort’ is added.

■Modification to TinySink.cpp

1 check_header_footer(m_in_data, recv_byte_size); // check header and footer
2 unsigned int event_byte_size = get_event_size(recv_byte_size);
3

4 ///////////// Write component main logic here. /////////////
5 // online_analyze();
6 if (event_byte_size > RECV_BUFFER_SIZE) { // Addition
7 fatal_error_report(USER_DEFINED_ERROR1, "Length Too Large"); // Addition
8 } // Addition
9 memcpy(m_data, &m_in_data.data[HEADER_BYTE_SIZE], event_byte_size); // Addition

10 for (unsigned int i = 0; i < event_byte_size; i++) { // Addition
11 fprintf(stderr, "%02X ", m_data[i]); // Addition
12 if ((i + 1) % 16 == 0) { // Addition
13 fprintf(stderr, "\n"); // Addition
14 } // Addition
15 } // Addition
16 ///
17

18 inc_sequence_num(); // increase sequence num.
19 inc_total_data_size(event_byte_size); // increase total data byte size

‘memcpy()’ copies data from ‘m_in_data.data[HEADER_BYTE_SIZE]’ for the data size
‘event_byte_size’. To avoid buffer overrun, the number of event data bytes is confirmed before
executing ‘memcpy()’. If the number is bigger than the buffer size (RECV_BUFFER_SIZE), it
is judged as a fatal error occurrence and then ‘fatal_error_report()’ reports it to ‘DaqOperator’.
The ‘for’ loop starting from Line 10 extracts the data and outputs them to the standard error
output.

After modifications, compile it.

% cd
% cd MyDaq
% cd TinySource
% make
% cd ..
% cd TinySink
% make
% cd ..

30	

7 Example of creating simple components

■Operation test ‘/usr/share/daqmw/conf/tiny.xml’ is the configuration file for the ‘Tiny’
component. It must be copied before use. Confirm if ‘execPath’ has a full path of the
executable file for the component created above. If not, edit it using the editor. The code part
of ‘/usr/share/daqmw/conf/tiny.xml’ is shown below.

1 <configInfo>
2 <daqOperator>
3 <hostAddr>127.0.0.1</hostAddr>
4 </daqOperator>
5 <daqGroups>
6 <daqGroup gid="group0">
7 <components>
8 <component cid="TinySource0">
9 <hostAddr>127.0.0.1</hostAddr>

10 <hostPort>50000</hostPort>
11 <instName>TinySource0.rtc</instName>
12 <execPath>/home/daq/MyDaq/TinySource/TinySourceComp</execPath>
13 <confFile>/tmp/daqmw/rtc.conf</confFile>
14 <startOrd>2</startOrd>
15 <inPorts>
16 </inPorts>
17 <outPorts>
18 <outPort>tinysource_out</outPort>
19 </outPorts>
20 <params>
21 </params>
22 </component>
23 <component cid="TinySink0">
24 <hostAddr>127.0.0.1</hostAddr>
25 <hostPort>50000</hostPort>
26 <instName>TinySink0.rtc</instName>
27 <execPath>/home/daq/MyDaq/TinySink/TinySinkComp</execPath>
28 <confFile>/tmp/daqmw/rtc.conf</confFile>
29 <startOrd>1</startOrd>
30 <inPorts>
31 <inPort from="TinySource0:tinysource_out">tinysink_in</inPort>
32 </inPorts>
33 <outPorts>
34 </outPorts>
35 <params>
36 </params>
37 </component>
38 </components>
39 </daqGroup>
40 </daqGroups>
41 </configInfo>

Since the ‘TinySource’ component has one ‘OutPort’, ‘OutPorts’ at Line 17 designates one
‘OutPort’. Also, since the ‘TinySink’ component has one ‘InPort’, ‘InPorts’ at Line 30 designates
one ‘InPort’. For details of the other tags, see the “DAQ-Middleware 1.1.0 Technical Manual”
[2].

Now, launch this.

31	

7 Example of creating simple components

% cd
% cd MyDaq
% ls tiny.xml (Confirming the presence of ‘tiny.xml’. Executing the following commands if not yet copied.)
% cp /usr/share/daqmw/conf/tiny.xml .
% run.py -c -l tiny.xml
(Since it gushes out into the log, stop it after 5 sec or so by pressing 2.)
(If CONFIGURED, press Ctrl-C to get out of ‘run.py’.)

The ‘run.py’ starts the component to output component errors to ‘/tmp/daqmw/log.
component program name’. Confirm that the data output by ‘fprintf()’ is recorded in
‘/tmp/daqmw/log.TinySinkComp’.

Now, the components can communicate with each other. In the actual ‘DAQ’ system, the
‘Source’-type component will be socket-programmed to read data from the read-out module,
and send the read data to the subsequent component. Also, the ‘Sink’-type component will be
designed so that it decodes the data sent from the upstream component using a histogram tool
and then draws a histogram, instead of simply outputting it to the standard error output.

32	

8 Outline of data collection system developed in this document

Emulator SampleReader SampleMonitor

Histogram

Fig. 6 The schematic outline of the data collection system developed in
this document. The ‘SampleReader’ reads data from the ‘Emulator’ and
then sends it to the subsequent ‘SampleMonitor’. The ‘SampleMonitor’
decodes the received data to draw a histogram displayed on the screen.

8 Outline of data collection system developed in this document

A schematic outline of the data collection system developed in this document is shown in
Fig. 6. The ‘SampleReader’ reads the data from ‘Emulator’ and then send it to the subsequent
‘SampleMonitor’. The ‘SampleMonitor’ decodes the received data to draw a histogram
displayed on the screen. This is a simple data collection system. For the ‘Emulator’, we use a
software emulator.

9 Software emulator

9.1 Set-up
With DAQ-Middleware 1.2.0 or later, no particular installation process is needed for the

software emulator, since it is already installed as ‘/usr/bin/daqmw-emulator’*4. With DAQ-
Middleware earlier than 1.2.0, it can be downloaded from the URL shown below.

http://daqmw.kek.jp/src/daqmw-emulator.tar.gz

After the download, expand the file under the directory ‘/home/daq/MyDaq/’.

% cd
% cd MyDaq
% lftpget http://daqmw.kek.jp/src/daqmw-emulator.tar.gz
% tar xf daqmw-emulator.tar.gz
% ls
daqmw-emulator

*4 The source files are placed under ‘/usr/share/daqmw/daqmw-emulator/’.

33	

9 Software emulator

% cd daqmw-emulator
% make
% cp emulator ~/bin/daqmw-emulator

9.2 Launch

When executing the following from the command line, the system waits for a connection at
port 2222.

% daqmw-emulator

Right after the connection is established, it starts sending data. Without any options to the
above command line, it sends the data at approx. 8kB/s. To change the transfer rate, specify
it with ‘-t’ option as follows.

% daqmw-emulator -t 128k

This sets the data transfer rate to 128kB/s. Specifying the option ‘-t 1M’ will make it 1MB/s.
Avoid too large a value for this, since it puts an extra computation load, particularly when
using a VMware Player.

To stop, press ‘Ctrl-C’ as usual.

9.3 Data format of software emulator

The data format of the software emulator used in this document is shown in Fig. 7. It
uses 8 bytes for sending 1 event data. First, it comes with a signature (magic) 0x5a. The
system checks this byte to said value on decoding to confirm if it is reading the correct
position. Next comes a data format version (0x01). A module number comes after the
format version. In this software emulator, the value ‘0x0~0x7’ is used therein. The
subsequent 1 byte is reserved for a future expansion. The last 4 bytes have event data
(integer value). This event data has the value of the number 0.000 to 1000.000 multiplied
by 1000, then rounded off to the integer. When sending multiple bytes of any meaningful
numerical value, a protocol for a byte order needs to be determined. This software emulator
uses the network byte order to send data. To convert it to the host byte order on the reader
side, the ‘ntohl()’ function is used.

9.4 Confirmation of data from emulator

Now, confirm what data is coming from the emulator. It is easier to use the ‘nc’
command to do so. Execute the following commands.

34	

10 ‘SampleReader’ component development

Signature
(Magic)

Data Format
Version

Module
Number

Reserved

Event Data

Fig. 7 The format of data coming in from the software emulator. It uses 8 bytes
to send 1 event data. The event data takes the value of 0.000 to 1000.000 for its
physical quantity and the emulator sends the value multiplied by 1000, then
rounded off to 4 byte-integer. Its byte order is the network byte order. From
bytes 0 to 3 are meta data. The magic is fixed to 0x5a and the data format
version is fixed to 0x01. The module number comes in with 0x01 to 0x07
although this manual does not use it.

These commands need to be input on 1 line but not divided into multiple lines*5.

(sleep 10; pkill -f /usr/bin/nc) & /usr/bin/nc 127.0.0.1 2222 > data.out

The ‘nc’ command then connects to port 2222 at 127.0.0.1. The read data is saved in the
‘data.out’ file. The reading time is seconds specified with ‘sleep’, which, in this case, is 10
seconds. For more details about the data format, see the previous Section. Decoding
accordingly (for example, writing a program such that it reads 8 bytes and picks up 4th and 8th
byte as ‘int’, then, converting it to host byte order with ‘ntohl()’ and divide it by 1000.0.) to
draw a histogram, it will have peaks at 100, 200, 300,…,800 as in Fig. 8. The objective in
this manual is to build a system to display such Fig.s, updated regularly.

Here, we explain the details of the emulator data. In fig. 8, the data around the peak at 100
have all their module numbers at 0. Those for 200 have all their module numbers at 1. Those
for 800 have all their module numbers at 7. For Fig. 8, the module numbers have been ignored
and the data from all the modules overlap. This document does not use the module number sent
from the emulator.

10 ‘ SampleReader’ component development

The codes for the ‘SampleReader’ and ‘SampleMonitor’ described below are placed in the
‘SampleReader’ and ‘SampleMonitor’ directories under ‘/usr/share/daqmw/examples/’. The
modifications from the template file generated by ‘newcomp’ can be checked using, for
example, the ‘diff’ command as below.

*5 Simply using ‘pkill nc’ sends a signal to all the processes having the string ‘nc’, not just the ‘nc’ process, and then those unrelated
processes ‘exit’. So, here, a full path is specified with ‘nc’.

35	

10 ‘SampleReader’ component development

SampleHistogram
Entries 131072
Mean 449.5
RMS 229.2

SampleHistogram

1400

SampleHistogram
Entries 131072
Mean 449.5
RMS 229.2

1200

1000

800

600

400

200

0
0 100 200 300 400 500 600 700 800 900 1000

Fig. 8 Histogram of the data from software emulator used in this manual

% mkdir diff-test
% cd diff-test
% newcomp -t source SampleReader
% ls
SampleReader
% newcomp -t sink SampleMonitor
% ls
SampleMonitor SampleReader
% mv SampleReader SK-SampleReader
% mv SampleMonitor SK-SampleMonitor
% cp -r /usr/share/daqmw/examples/SampleReader .
% cp -r /usr/share/daqmw/examples/SampleMonitor .
% diff -urNp SK-SampleReader SampleReader | less
% diff -urNp SK-SampleMonitor SampleMonitor | less

With ‘-p’ option of ‘diff’ command, the name of function for which the modification has
been done is displayed at the same line @@ to indicate that there was a modification as
follows. This is useful in identifying the modified part.

@@ -85,6 +87,9 @@ int SampleReader::daq_configure()
 (Modifications come hereafter)

Now, we develop a component in reality. Here, we create a component that constitutes the
DAQ system described in Section 8. In this Section, we create the ‘SampleReader’
component that reads data from the emulator and then sends it to subsequent components.

36	

10 ‘SampleReader’ component development

First, we consider the specification of the data-reading part of ‘SampleReader’ component. It is
made it as follows:

• For the socket part, use the ‘Sock’ library attached to the DAQ-Middleware.
• Consider it as a fatal error occurrence with a connection failure.
• Prepare 1024 bytes for a buffer to read from the socket.
• Always read 1024 bytes at a time.
• Consider it as a fatal error occurrence when unable to read 1024 bytes within two

 seconds.
• Specify IP address and port number of the emulator, in the configuration file.
• When, in ‘daq_run()’, unable to send data to the subsequent component, the next

‘daq_run()’ will not newly read data but resend the data it could not send.

The include file of the ‘Sock’ library attached to the DAQ-Middleware is
‘/usr/include/daqmw/Sock.h’, and the library file is ‘/usr/lib/daqmw/libSock.so’.

Once the specification is determined, move on to the implementation work. First, create
a template by executing the ‘newcomp -t source SampleReader’ to specify the ‘Source’-type
component. Also, move to the generated directory (Here, ‘SampleReader’) and then
‘make’, to confirm if the development environment is working correctly.

1 % newcomp -t source SampleReader (Generating template files)
2 % cd SampleReader (Move to ‘SampleReader’ directory created)
3 % ls (Check the generated files)
4 Makefile SampleReader.cpp SampleReader.h SampleReaderComp.cpp
5 % make (Confirm the development environment)
6 rm -fr autogen (If it is normal, an executable file
7 mkdir autogen ‘SampleReaderComp’ is created.)
8 (omitted…)
9 % ls (Confirm the created files)

10 Makefile SampleReader.h SampleReaderComp* SampleReaderComp.o
11 SampleReader.cpp SampleReader.o SampleReaderComp.cpp autogen/
12 % make clean (Delete the object file, executable file
13 and automatically generated file (under ‘autogen’ directory
14))
15 % ls
16 Makefile SampleReader.cpp SampleReader.h SampleReaderComp.cpp

10.1 Modification to ‘SampleReader.h’

We modify ‘SampleReader.h’ as follows.

10.1.1 Use of ‘Sock’ library

First, have ‘Sock’ library ready for use.

37	

10 ‘SampleReader’ component development

1 #include "DaqComponentBase.h"
2

3 #include <daqmw/Sock.h> // Addition
4

5 using namespace RTC;

The modification here is the addition of ‘#include’ on Line 4. This is to make ‘Sock’ library
attached to DAQ-Middleware ready for use.

10.1.2 Addition of member variables etc.
Modify member variables and constants.

1 int set_data(unsigned int data_byte_size);
2 int write_OutPort();
3

4 DAQMW::Sock* m_sock; /// Addition of socket for data server
5

6 static const int EVENT_BYTE_SIZE = 8; // Addition of event byte size
7 static const int SEND_BUFFER_SIZE = 1024; // Change
8 unsigned char m_data[SEND_BUFFER_SIZE];
9 unsigned int m_recv_byte_size; // Addition

10

11 BufferStatus m_out_status;
12

13 int m_srcPort; // Addition of Port No. of data server
14 std::string m_srcAddr; // Addition of IP addr. of data server

The modifications are as written in the comments.

• (Line 4) Addition of the ‘Sock’ object
• (Line 6) It is defined that 1 event data from the emulator has 8bytes.
• (Line 7) It is defined that one data-reading handles 1024 bytes as mentioned above.
• (Line 13) The variable to designate IP port number of the emulator. The port number

is obtained from the configuration file.
• (Line 14) The IP address variable of the emulator. The IP address is obtained

from the configuration file.

Also, on Line 9, the variable ‘m_recv_byte_size’ is added to the member variables. This is the
variable to implement the condition determined in the above specification that “in ‘daq_run()’,
when unable to send data to the subsequent component, the next ‘daq_run()’ will not newly read
data from the emulator but will resend data it could not send”. For data-resending, it needs to
memorize how many bytes of data ‘daq_run()’ has read from the emulator. This variable is
used for that purpose. This time, we defined it to always read 1024 bytes for future expansions.

38	

10 ‘SampleReader’ component development

10.2 Modification to ‘SampleReader.cpp’

Next, we move on to the modification of ‘SampleReader.cpp’. Here, we describe for each
function in the state chart (fig.3).

■Constructor

1 SampleReader::SampleReader(RTC::Manager* manager)
2 : DAQMW::DaqComponentBase(manager),
3 m_OutPort("samplereader_out", m_out_data),
4 m_sock(0), // Addition
5 m_recv_byte_size(0),
6 m_out_status(BUF_SUCCESS),
7
8 m_debug(false)
9 {

10 // Registration: InPort/OutPort/Service
11

12 // Set OutPort buffers
13 registerOutPort("samplereader_out", m_OutPort);
14

15 init_command_port();
16 init_state_table();
17 set_comp_name("SAMPLEREADER");
18 }

This initializes the data-reading socket object (‘m_sock’) to 0. With this value 0, it can be
judged if the socket object should be ‘delete’-d. See, ‘daq_stop()’ mentioned below.

■fatal type

1 using DAQMW::FatalType::DATAPATH_DISCONNECTED;
2 using DAQMW::FatalType::OUTPORT_ERROR;
3 using DAQMW::FatalType::USER_DEFINED_ERROR1;
4 using DAQMW::FatalType::USER_DEFINED_ERROR2;

The ‘using’ declaration omits the namespace names in the argument of ‘fatal_error_report()’.
For the ‘fatal_error_report()’, see the “DAQ-Middleware 1.1.0 Technical Manual” [2].

■daq configure()

1 int SampleReader::daq_configure()
2 {
3 std::cerr << "*** SampleReader::configure" << std::endl;
4

5 ::NVList* paramList;
6 paramList = m_daq_service0.getCompParams();
7 parse_params(paramList);

39	

10 ‘SampleReader’ component development

8

9 return 0;
10 }

The above is the ‘daq_configure()’ generated by the ‘newcomp -t source SampleReader’. The
implementation this time does not include any modifications. At Line 6, ‘getCompParams()’
obtains the parameters specified in the configuration file. Subsequently, we move on to the
modification of ‘parse_params()’ which analyses the obtained parameters and sets up the
variables.

The ‘parse_params()’ is modified so that the value acquired from the configuration file can be
set to ‘m_srcAddr’ and ‘m_srcPort’ variables.

1 int SampleReader::parse_params(::NVList* list)
2 {
3 bool srcAddrSpecified = false; // Addition
4 bool srcPortSpecified = false; // Addition
5

6 std::cerr << "param list length:" << (*list).length() << std::endl;
7

8 int len = (*list).length();
9 for (int i = 0; i < len; i+=2) {

10 std::string sname = (std::string)(*list)[i].value;
11 std::string svalue = (std::string)(*list)[i+1].value;
12

13 std::cerr << "sname: " << sname << " ";
14 std::cerr << "value: " << svalue << std::endl;
15

16 // Addition (Setting m_srcAddr and m_srcPort)
17 if (sname == "srcAddr") {
18 srcAddrSpecified = true;
19 if (m_debug) {
20 std::cerr << "source addr: " << svalue << std::endl;
21 }
22 m_srcAddr = svalue;
23 }
24 if (sname == "srcPort") {
25 srcPortSpecified = true;
26 if (m_debug) {
27 std::cerr << "source port: " << svalue << std::endl;
28 }
29 char* offset;
30 m_srcPort = (int)strtol(svalue.c_str(), &offset, 10);
31 }
32

33 }
34 // Addition (A fatal error if ‘srcAddr’ and ‘ srcPort’ have not been obtained.)
35 //
36 if (!srcAddrSpecified) {
37 std::cerr << "### ERROR:data source address not specified\n";
38 fatal_error_report(USER_DEFINED_ERROR1, "NO SRC ADDRESS");
39 }
40 if (!srcPortSpecified) {
41 std::cerr << "### ERROR:data source port not specified\n";
42 fatal_error_report(USER_DEFINED_ERROR2, "NO SRC PORT");
43 }
44

40	

10 ‘SampleReader’ component development

45 return 0;
46 }

Add ‘bool’ variables at Line 3 and 4 for recording if the acquisitions of ‘m_srcAddr’ and
‘m_srcPort’ variables to be added were a success or failure.

Since ‘list’ variables have the parameters specified in the configuration file in the order of
parameter name, value, parameter name, value,……, the necessary parameter name is linear-
searched. If found, set the value to the variable. The code at Line 17 does this. Since the
value is string, ‘strtol()’ converts it to a numerical value. Also, the codes from Line 36 judge
a fatal error occurrence in case the ‘m_srcAddr’ and ‘m_srcPort’ could not be acquired, and
notifies the ‘DaqOperator’ of the error occurrence by ‘fatal_error_report()’. Now, the
modification of the ‘daq_configure()’ is completed.

■daq start()

1 int SampleReader::daq_start()
2 {
3 std::cerr << "*** SampleReader::start" << std::endl;
4
5 m_out_status = BUF_SUCCESS;
6
7 // The followings are added.
8 try {
9 // Create socket and connect to data server.

10 m_sock = new DAQMW::Sock();
11 m_sock->connect(m_srcAddr, m_srcPort);
12 } catch (DAQMW::SockException& e) {
13 std::cerr << "Sock Fatal Error : " << e.what() << std::endl;
14 fatal_error_report(USER_DEFINED_ERROR1, "SOCKET FATAL ERROR");
15 } catch (...) {
16 std::cerr << "Sock Fatal Error : Unknown" << std::endl;
17 fatal_error_report(USER_DEFINED_ERROR1, "SOCKET FATAL ERROR");
18 }
19
20 // Check data port connections
21 bool outport_conn = check_dataPort_connections(m_OutPort);
22 if (!outport_conn) {
23 std::cerr << "### NO Connection" << std::endl;
24 fatal_error_report(DATAPATH_DISCONNECTED);
25 }
26
27 return 0;
28 }

Here, the codes from Line 9 are added. The added contents are to generate the ‘Sock’ object (line
10) and then connect to the server (emulator this time) designated in ‘m_srcAddr’ and ‘m_srcPort’.
We added the codes for the specification where a fatal failure is considered to occur with a
connection failure (from Line 12). The ‘check_dataPort_connection()’ is the function to confirm
the connection to the subsequent component. The connection failure generates a fatal error (from
Line 21).

41	

10 ‘SampleReader’ component development

■daq run()

1 int SampleReader::daq_run()
2 {
3 if (m_debug) {
4 std::cerr << "*** SampleReader::run" << std::endl;
5 }
6

7 if (check_trans_lock()) { // check if stop command has come
8 set_trans_unlock(); // transit to CONFIGURED state
9 return 0;

10 }
11

12 if (m_out_status == BUF_SUCCESS) { // previous OutPort.write() successfully done
13 int ret = read_data_from_detectors();
14 if (ret > 0) {
15 m_recv_byte_size = ret;
16 unsigned long sequence_num = get_sequence_num();
17 set_data(m_recv_byte_size); // set data to OutPort Buffer
18 }
19 }
20
21 if (write_OutPort() < 0) {
22 ; // Timeout. do nothing.
23 }
24 else { // OutPort write successfully done
25 inc_sequence_num(); // increase sequence num.
26 inc_total_data_size(m_recv_byte_size); // increase total data byte size
27 }
28

29 return 0;
30 }

There is no modification in the ‘daq_run()’ from that generated by the ‘newcomp’. Below, the
above codes are described.
(Line 7 to 10) This part checks if the ‘stop’ command has come in. The ‘check_trans_lock()’
returns the ‘true’ with the ‘stop’ command. In this case, the system transitions to the
‘CONFIGURED’ state by calling the ‘set_trans_lock()’ and then terminates the ‘daq_run()’. If
the ‘stop’ command has not yet come in, it reads the data (however, we code that, when the
component could not send the data to the subsequent component in the previous ‘daq_run()’, it
will resend the previously read data without reading new data from the emulator). For the
meanings and details of ‘check_trans_lock()’ and ‘set_trans_lock()’, see the “DAQ-Middleware
1.1.0 Technical Manual” [2].
(Line 12 to 19) The ‘if’ checks the correct transmission of the data to the subsequent component
in the previous ‘daq_run()’ (When ‘m_out_status’ is ‘BUF_SUCCESS’, the data has been
correctly transmitted). If the data has been sent to the subsequent component in the previous
‘daq_run()’, it reads the data from the emulator. Code ‘read_data_from_detector()’ so that the
data read out enter the ‘m_data’ array defined in the ‘SampleReader.h’. We will mention this
function later. Once data is successfully read, the ‘read_data_from_detector()’ returns the
number of bytes that have been read (‘read_data_from_detector()’ will be coded to do so). So,
Line 13 checks its return value. The ‘set_data()’ at Line 16 is the function to set the header, footer

42	

10 ‘SampleReader’ component development

and data transferred between components to the ‘OutPort’ buffer. This implementation will be
described later.
(Line 20) The ‘write_OutPort()’ is the function to send the data to the subsequent component
and the implementation of which will be described later. When the data is successfully sent to
the subsequent component, the ‘inc_sequence_num()’ increments the sequence number retained
in this component, by 1. Also, the ‘inc_total_data_size()’ increments the number of the event
data bytes handled previously that is retained in this component. For the data including the
sequence number retained by the ‘inc_sequence_num()’, ‘inc_total_data_size()’ and the
component, see the “DAQ-Middleware 1.1.0 Technical Manual” [2].

■read data from datectors()

1 int SampleReader::read_data_from_detectors()
2 {
3 int received_data_size = 0;
4

5 /// write your logic here
6 /// read 1024 byte data from data server
7 int status = m_sock->readAll(m_data, SEND_BUFFER_SIZE);
8 if (status == DAQMW::Sock::ERROR_FATAL) {
9 std::cerr << "### ERROR: m_sock->readAll" << std::endl;

10 fatal_error_report(USER_DEFINED_ERROR1, "SOCKET FATAL ERROR");
11 }
12 else if (status == DAQMW::Sock::ERROR_TIMEOUT) {
13 std::cerr << "### Timeout: m_sock->readAll" << std::endl;
14 fatal_error_report(USER_DEFINED_ERROR2, "SOCKET TIMEOUT");
15 }
16 else {
17 received_data_size = SEND_BUFFER_SIZE;
18 }
19

20 return received_data_size;
21 }

As mentioned above, the ‘read_data_from_detectors()’ reads the data from the emulator. Its
specification is as follows.

• The return value is the number of bytes read out.
• The data read out enter the array represented by the ‘m_data’ member variable.
• Data-reading failure generates a fatal error.
• Time-out in reading-out (the default setting of ‘Sock’ library, 2 seconds is employed)

generates a fatal error.

43	

10 ‘SampleReader’ component development

The socket-related data-reading cannot always read out the specified numbers of bytes (for

example, it could be the case that 100 bytes were specified for reading, and only 50 bytes of the
data has arrived.). If you want to ensure the reading of the exactly specified bytes, you need to
code such functions manually. Since this type of function is commonly used, the DAQ-
Middleware provides the ‘readAll()’ function in the ‘Sock’ library. The ‘readAll()’ has two
arguments. The first one is specified with an array wherein the successfully read-out data are
stored. The second one specifies the number of bytes to read out. The return value of the
‘readAll()’ is as follows.

• Returns ‘DAQMW::Sock::ERROR_FATAL’ on a read-out error.
• Returns ‘DAQMW::Sock::ERROR_TIMEOUT’ on read-out time-out (2 seconds by
default).
• Returns the number of bytes read out on a correct reading.

Line 7 uses the ‘readAll()’ and Line 8 to 18 check a fatal error occurrence with reference to its
return value. When reading correctly without a fatal error, Line 20 returns the number of
bytes read out according to the specification of the above-mentioned
‘read_data_from_detectors()’.

■set data()

1 int SampleReader::set_data(unsigned int data_byte_size)
2 {
3 unsigned char header[8];
4 unsigned char footer[8];
5
6 set_header(&header[0], data_byte_size);
7 set_footer(&footer[0]);
8
9 ///set OutPort buffer length

10 m_out_data.data.length(data_byte_size + HEADER_BYTE_SIZE + FOOTER_BYTE_SIZE);
11 memcpy(&(m_out_data.data[0]), &header[0], HEADER_BYTE_SIZE);
12 memcpy(&(m_out_data.data[HEADER_BYTE_SIZE]), &m_data[0], data_byte_size);
13 memcpy(&(m_out_data.data[HEADER_BYTE_SIZE + data_byte_size]), &footer[0],
14 FOOTER_BYTE_SIZE);
15
16 return 0;
17 }

For ‘set_data()’, there is no modification from the template generated by ‘newcomp’ command.

‘set_data()’ adds component header and footer to the data to be sent to the subsequent
component*6.

*6 The format of the data transferred between components is as already shown in Fig. 4. Also, the header and footer formats
for the figure are as shown in Fig. 5. ‘DataByteSize’ and ‘sequence number’ in the header and footer formats are used in
‘check_header_footer()’by the subsequent component to verify if there is no missings in the read-out data when receiving
them from the upstream component.

44	

10 ‘SampleReader’ component development

First, secure ‘header’ and ‘footer’ arrays. Next, using ‘set_header()’ sets the

‘DataByteSize’ from 32nd to 63rd bit of the header. Also, the ‘set_footer()’ sets the ‘sequence
number’. The ‘sequence number’ does not need to be explicitly specified because it uses the
value of the private variable ‘m_loop’. So, the ‘set_footer()’ only has a pointer to the head of
the ‘footer’ buffer as its argument. The ‘m_out_data.data.length()’ on Line 10 specifies the
number of bytes to be written in the ‘OutPort’ to secure the ‘m_out_data.data’ buffer.
Subsequently, it copies the header, footer and data created above to this buffer using ‘memcpy()’
(From Line 11 to 14).

■write OutPort()

1 int SampleReader::write_OutPort()
2 {
3 ////////////////// send data from OutPort //////////////////
4 bool ret = m_OutPort.write();
5
6 //////////////////// check write status /////////////////////
7 if (ret == false) { // TIMEOUT or FATAL
8 m_out_status = check_outPort_status(m_OutPort);
9 if (m_out_status == BUF_FATAL) { // Fatal error

10 fatal_error_report(OUTPORT_ERROR);
11 }
12 if (m_out_status == BUF_TIMEOUT) { // Timeout
13 return -1;
14 }
15 }
16 m_out_status = BUF_SUCCESS;
17 return 0; // successfully done
18 }

The ‘write()’ method of the ‘m_OutPort’ writes data in the out-port. The data to be written in is
stored in the ‘m_out_data.data’ array in the ‘set_data()’. When ‘false’ returned, the
‘check_outPort_status(m_OutPort)’ checks the state of the out-port. With a fatal error,
‘fatal_error_report()’ notifies a fatal error occurrence to the ‘DaqOperator’. When there is a time-
out, it returns -1 and notifies the time-out to the caller. If the ‘write()’ worked successfully,
‘BUF_SUCCESS’ is set to the ‘m_out_status’ and the ‘write_OutPort()’ terminates.

■daq stop()

1 int SampleReader::daq_stop()
2 {
3 std::cerr << "*** SampleReader::stop" << std::endl;
4
5 if (m_sock) { // Addition
6 m_sock->disconnect(); // Addition
7 delete m_sock; // Addition
8 m_sock = 0; // Addition
9 } // Addition

10

11 return 0;
12 }

45	

11 SampleMonitor component development

Here, the ‘disconnect()’ method of the ‘Sock’ library cuts off the connection from the
emulator. Since, in some systems, you may need to program to move on to the ‘daq_stop()’
before creating the socket for data-reading, it refers to the value of the ‘m_sock’ to judge if
the socket has been created*7 (Although this works in the components other than the
‘SampleReader’, it is designed as above so that it can be modified from this example in the
future).

■daq pause() and daq resume() No modifications to the ‘daq_pause()’ and
‘daq_resume()’.

10.3 Modification to Makefile

Since the ‘SampleReader’ is designed to use the ‘Sock’ library, you need to specify the
position of the library file in the ‘Makefile’. Modify the ‘Makefile’ as follows.

SRCS += $(COMP_NAME).cpp
SRCS += $(COMP_NAME)Comp.cpp

The following lines are added.
LDLIBS += -L/usr/lib/daqmw -lSock

The include file of the ‘Sock’ library is in ‘/usr/include/daqmw/Sock.h’. Since this is not
the original standard directory, it requires additional measures including the addition of ‘-
I/usr/include/daqmw’ to ‘CPPFLAGS’. However, this is not necessary because the addition
has already been done in ‘/usr/share/ daqmw/comp.mk’ that is ‘include’-d at the last part in
the ‘Makefile’. Also, when it needs to read the include files placed in an non-standard
directory other than the ‘/usr/include/daqmw’, such as, for example, ‘ROOT’ referring to
‘/usr/local/root/include’, you should notice the need to script ‘Makefile’ accordingly (as with
‘SampleMonitor’ in the next Section).

Then, if ‘make’ still generates an error, take necessary the measures with reference to the
error message.

11 SampleMonitor component development

Next, we move on to the development of the ‘SampleMonitor’ component to receive the
data from the ‘SampleReader’ to display a histogram on the screen. Here, we use ‘ROOT’*8
for the histogram drawing tool.

As in the ‘SampleReader’, the ‘newcomp’ command generates template files. Since this is
a development of the ‘Sink’-type component, specify ‘-t sink’.

% cd (move on to home directory)
% mkdir MyDaq (if there is no development directory, it must be created here.

 The directory name does not need to be this)

*7 We consider the case where the component needs to cast ‘SiTCP slow control’ packet before starting the data-read, for
example. It is possible to program a code that is written before the creation of the data-reading socket, and when ‘slow
control’ fails, ‘fatal_error_report()’ is executed before the socket creation.

*8 http://root.cern.ch/

46	

11 SampleMonitor component development

% cd MyDaq
% newcomp -t sink SampleMonitor (With ‘-t sink’ specified, execute ‘ newcomp’)
% cd SampleMonitor
% ls (Confirm the generated files)
Makefile SampleMonitor.cpp SampleMonitor.h SampleMonitorComp.cpp
% make (try ‘make’ to confirm if the development environment is ok.)
rm -fr autogen
mkdir autogen
(omitted…)
% ls
Makefile SampleMonitor.h SampleMonitorComp* SampleMonitorComp.o
SampleMonitor.cpp SampleMonitor.o SampleMonitorComp.cpp autogen
% make clean

Here, the specification of a histogram where the minimum value is set to 0, its maximum is
1000, and the number of bins is set to 100.

This component works roughly as follows.

1. Read data from the upstream component.
2. Confirm that there is nothing missing in data-reading, with reference to the component
header and footer.
3. Decode the multiple event data.
4. Increment the event data to the ‘ROOT’ histogram data.
5. Update the histogram if its update condition is met.
6. Repeat the above, hereunder.

This ‘SampleMonitor’ component is designed such that ‘get_sequence_num()’ acquires
the number of times ‘daq_run()’ is repeated as the update condition for the histogram, and
then updates at the determined repetitions.

11.1 Creation of ‘SampleData.h’

Since the data format from this emulator is relatively simple, it may be possible to handle
the data structure without defining it as ‘structure’. However, for future expansions*9, the
‘structure’ of the event data format is defined here. Here, a file named ‘SampleData.h’ is
newly created and defined as follows. For the event data format from the emulator, see Fig.
7 in Section 9.3.

#ifndef SAMPLEDATA_H
#define SAMPLEDATA_H

const int ONE_EVENT_SIZE = 8;

struct sampleData {
unsigned char magic;
unsigned char format_ver;

*9 And for other people (including yourself 2 months later)

47	

11 SampleMonitor component development

unsigned char module_num;
unsigned char reserved;
unsigned int data;

};

#endif

11.2 Modification to ‘SampleMonitor.h’

We modify ‘SampleMonitor.h’ as follows.

■Include file

1 #include <arpa/inet.h> // Addition for ntohl()
2

3 ////////// ROOT Include files //////////
4 #include "TH1.h" // Addition
5 #include "TCanvas.h" // Addition
6 #include "TStyle.h" // Addition
7 #include "TApplication.h" // Addition
8

9 #include "SampleData.h" // Addition

‘<arpa/inet.h>’ on Line 1 is for the ‘ntol()’ function. Line 3 to 7 are the include files for
‘ROOT’ used to create the histogram. In ‘SampleData.h’ on Line 9, the data format from the
emulator is defined as ‘structure’ as seen in the previous Section.

■Variables and methods

1 int decode_data(const unsigned char* mydata); // Addition
2 int fill_data(const unsigned char* mydata, const int size); // Addition
3

4 BufferStatus m_in_status;
5

6 ////////// ROOT Histogram //////////
7 TCanvas *m_canvas; // Addition
8 TH1F *m_hist; // Addition
9 int m_bin; // Addition

10 double m_min; // Addition
11 double m_max; // Addition
12 int m_monitor_update_rate; // Addition
13 unsigned char m_recv_data[4096]; // Addition
14 unsigned int m_event_byte_size; // Addition
15 struct sampleData m_sampleData; // Addition

The ‘decode_data()’ on Line 1 is the method to decode the data. The ‘fill_data()’ on Line 2 is
the method to fill data in the ‘ROOT’ histogram data. Line 7 to 11 are the variables for the
histogram. The histogram is drawn on the ‘m_canvas’ defined on Line 7. In this monitor, we
defined that the update timing of the histogram is based on how many times ‘daq_run()’ has
run. Concretely, the histogram is updated when ‘daq_run()’ is repeated for the times specified
with the ‘m_monitor_update_rate’ variable on Line 12. The ‘m_recv_data’ on Line 13 is the

48	

11 SampleMonitor component development

buffer to store the data sent from the upstream component having their component header and
footer excluded. The ‘m_event_byte_size’ on Line 14 is the variable to retain the number of
bytes read in one data-reading from the upstream component*10. The ‘m_sampleData’ on Line
15 is ‘structure’ for which the data format from the emulator is defined. The decoded data enter
here, and the value of this variable is used to increment them to the histogram data.

11.3 Modification to ‘SampleMonitor.cpp’

■Initialization of variables

1 SampleMonitor::SampleMonitor(RTC::Manager* manager)
2 : DAQMW::DaqComponentBase(manager),
3 m_InPort("samplemonitor_in", m_in_data),
4 m_in_status(BUF_SUCCESS),
5 m_canvas(0), // Addition
6 m_hist(0), // Addition
7 m_bin(0), // Addition
8 m_min(0), // Addition
9 m_max(0), // Addition

10 m_monitor_update_rate(30), // Addition
11 m_event_byte_size(0), // Addition
12 m_debug(false)

Here, initializing the variables used.

■daq dummy()

1 int SampleMonitor::daq_dummy()
2 {
3 if (m_canvas) { // Addition
4 m_canvas->Update(); // Addition
5 // daq_dummy() will be invoked again after 10 msec.
6 // This sleep reduces X servers’ load.
7 sleep(1); // Addition
8 } // Addition
9

10 return 0;
11 }

It is designed to draw a histogram regularly even in the ‘CONFIGURED’ state since, after a
transition to the ‘CONFIGURED’ state (after the ‘stop’ command is issued), the histogram
remains unseen when any ‘window’ other than ‘ROOT’ is moved over the ‘canvas’ of ‘ROOT’
and then moved back. Then redraw the histogram that had already been drawn, but not update it.

*10 The number of bytes readable here is always 1024 bytes since the ‘SampleReader’ sends 1024 bytes. We prepared the variable for
future expansions.

49	

11 SampleMonitor component development

■daq unconfigure()

1 int SampleMonitor::daq_unconfigure()
2 {
3 std::cerr << "*** SampleMonitor::unconfigure" << std::endl;
4 if (m_canvas) { // Addition
5 delete m_canvas; // Addition
6 m_canvas = 0; // Addition
7 } // Addition

8

9 if (m_hist) { // Addition
10 delete m_hist; // Addition
11 m_hist = 0; // Addition
12 } // Addition
13 return 0;
14 }

Here, the ‘canvas’ and the data used to draw the histogram are ‘delete’-d.

■daq start()

1 //////////////// CANVAS FOR HISTOS ///////////////////
2 if (m_canvas) { // Addition
3 delete m_canvas; // Addition
4 m_canvas = 0; // Addition
5 } // Addition
6 m_canvas = new TCanvas("c1", "histos", 0, 0, 600, 400); // Addition
7

8 //////////////// HISTOS ///////////////////
9 if (m_hist) { // Addition

10 delete m_hist; // Addition
11 m_hist = 0; // Addition
12 } // Addition
13

14 int m_hist_bin = 100; // Addition
15 double m_hist_min = 0.0; // Addition
16 double m_hist_max = 1000.0; // Addition
17

18 gStyle->SetStatW(0.4); // Addition
19 gStyle->SetStatH(0.2); // Addition
20 gStyle->SetOptStat("em"); // Addition
21

22 m_hist = new TH1F("hist", "hist", m_hist_bin, m_hist_min, m_hist_max); // Addition
23 m_hist->GetXaxis()->SetNdivisions(5); // Addition
24 m_hist->GetYaxis()->SetNdivisions(4); // Addition
25 m_hist->GetXaxis()->SetLabelSize(0.07); // Addition
26 m_hist->GetYaxis()->SetLabelSize(0.06); // Addition

Here, the histogram variables ‘m_canvas’ and ‘m_hist’ are set.
The value settings of both ‘m_canvas’ and ‘m_hist’ are ensured for ‘start’ executed once more

after a ‘stop’. If the values are set, they will be ‘delete’-d and initialized with 0, and then ‘new’-ed*11.
Line 14 to 16 specify the parameter of the histogram. On Line 18 to 26, ‘ROOT’ command specifies
the parameters of the histogram. For the details of this, see the manual of ‘ROOT’.

■daq run()

50	

11 SampleMonitor component development

1 int SampleMonitor::daq_run()
2 {
3 if (m_debug) {
4 std::cerr << "*** SampleMonitor::run" << std::endl;
5 }
6

7 unsigned int recv_byte_size = read_InPort();
8 if (recv_byte_size == 0) { // Timeout
9 return 0;

10 }
11

12 check_header_footer(m_in_data, recv_byte_size); // check header and footer
13 m_event_byte_size = get_event_size(recv_byte_size); // Change
14

15 ///////////// Write component main logic here. /////////////
16 memcpy(&m_recv_data[0], &m_in_data.data[HEADER_BYTE_SIZE], m_event_byte_size); // Addition
17

18 fill_data(&m_recv_data[0], m_event_byte_size); // Addition
19

20 if (m_monitor_update_rate == 0) { // Addition
21 m_monitor_update_rate = 1000; // Addition
22 } // Addition
23

24 unsigned long sequence_num = get_sequence_num(); // Addition
25 if ((sequence_num % m_monitor_update_rate) == 0) { // Addition
26 m_hist->Draw(); // Addition
27 m_canvas->Update(); // Addition
28 } // Addition
29 ///
30 inc_sequence_num(); // increase sequence num.
31 inc_total_data_size(m_event_byte_size); // name of variable changed; increase total data byte size
32

33 return 0;
34 }

(Line 7 to 10) The ‘read_InPort()’ mentioned below attempts to read out the data in ‘InPort’
(When the data is successfully read out, they enter the ‘m_in_data.data’ array).
The return value of ‘read_InPort()’ is implemented as follows.

• Return 0 with ‘timeout’
• Return the number of bytes read on a successful data reading.

The number of data bytes on a successful data reading includes those for the component header and
footer. In the scope of this manual, the ‘read_InPort()’ needs no modification from the template file
generated by the ‘newcomp -t sink’.

*11 Also, ‘daq_stop()’ initializes the variables with 0 after ‘delete’-ing them just in case.

51	

11 SampleMonitor component development

(Line 12) When the data-reading is completed successfully, ‘check_header_footer()’

confirms that there are no contradictions in the sequence number. If ‘check_header_footer()’
found any abnormality, ‘fatal_error_report()’ notifies an error to ‘DaqOperator’ and the
component transitions to an idle state.

(Line 13) ‘get_event_size()’ function acquires the number of bytes for the event
data.
(Line 16) When ‘read_InPort()’ read the data successfully, ‘memcpy()’ copies
only the event data row to be decoded, from those in the ‘m_in_data.data’ array.

(Line 18) ‘fill_data()’ function to fill in the histogram data, makes an increment.
The implementation of ‘fill_data()’ will be described later.

(Line 20 to 28) This monitor determines the timing to update the histogram based on the
number of repetitions of ‘daq_run()’ that received the data. On Line 24, ‘get_sequence_num()’
gets the process’s own sequence number, and Line 25 updates the histogram for every number
of times specified by ‘m_monitor_update_rate’ to draw it on the screen. For making a division,
the ‘if’ block on Line 20 confirms that the ‘m_monitor_update_rate’ is not 0 just in case.

(Line 29 to 30) The codes increment the sequence number as well as the number of event
bytes handled. For the meaning of the sequence number, ‘get_sequence_num()’ and
‘inc_total_data_size()’, see the “DAQ-Middleware 1.1.0 Technical Manual” [2].

■read InPort

1 unsigned int SampleMonitor::read_InPort()
2 {
3 /////////////// read data from InPort Buffer ///////////////
4 unsigned int recv_byte_size = 0;
5 bool ret = m_InPort.read();
6

7 //////////////////// check read status /////////////////////
8 if (ret == false) { // false: TIMEOUT or FATAL
9 m_in_status = check_inPort_status(m_InPort);

10 if (m_in_status == BUF_TIMEOUT) { // Buffer empty.
11 if (check_trans_lock()) { // Check if stop command has come.
12 set_trans_unlock(); // Transit to CONFIGURE state.
13 }
14 }
15 else if (m_in_status == BUF_FATAL) { // Fatal error
16 fatal_error_report(INPORT_ERROR);
17 }
18 }
19 else {
20 recv_byte_size = m_in_data.data.length();
21 }
22

23 if (m_debug) {
24 std::cerr << "m_in_data.data.length():" << recv_byte_size
25 << std::endl;
26 }
27

52	

11 SampleMonitor component development

28 return recv_byte_size;
29 }

This function attempts to read out the data from the ‘InPort’. There is no modification to this
function that remains as generated by ‘newcomp -t sink’. Below, the codes are described.

(Line 5) The ‘read()’ method attempts to read out the data from ‘InPort’. The read data enter
the ‘m_in_data.data’ array. Subsequently, the result read by ‘read()’ is checked.

(Line 8 to 14) When ‘read()’ returns ‘false’, ‘check_inPort_status()’ checks the state of the
‘InPort’. When ‘BUF_TIMEOUT’ is returned, that means no data to read. In this case,
‘check_trans_lock()’ checks if the ‘STOP’ command has come in. If it has, the system transits
back to ‘CONFIGURE’ state.

(Line 15 to 17) The ‘check_inPort_status()’ judges a fatal error occurrence with
‘BUF_FATAL’ returned, and then ‘fatal_error_report()’ casts an error to the ‘DaqOperator’. As a
result of reading ‘fatal_error_report()’, the component itself transits to an idle state.

(Line 19 to 21) The ‘read()’ method returning ‘true’ means a successful data-reading. Then, the
‘m_in_data.data.length()’ method acquires the length of the data that were read (its unit is byte).
(Line 28) When there is no length for the read data, or no data even on the component’s normal
operation, the code returns 0 and this function terminates.

■fill data()

1 // Whole this function is added.
2 int SampleMonitor::fill_data(const unsigned char* mydata, const int size)
3 {
4 for (int i = 0; i < size/(int)ONE_EVENT_SIZE; i++) {
5 decode_data(mydata);
6 float fdata = m_sampleData.data/1000.0; // 1000 times value is received
7 m_hist->Fill(fdata);
8

9 mydata+=ONE_EVENT_SIZE;
10 }
11 return 0;
12 }

This is the routine to fill the decoded data in the histogram. Its arguments are the pointer to the
data byte row and the data byte row length. It scans the data buffer from its head for every 1
event size (in case of emulator, ‘ONE_EVENT_SIZE = 8 bytes) to get the event data*12. The
extracted data are filled in the histogram data using ‘Fill()’ of ‘ROOT’.

*12 When you use data ‘structure’ defined to fit the byte row to scan, you need to recognize the alignment problem in ‘structure’,
although this method is not used here.

53	

11 SampleMonitor component development

■decode data()

1 int SampleMonitor::decode_data(const unsigned char* mydata) // Whole this function is added.
2 {
3 m_sampleData.magic = mydata[0];
4 m_sampleData.format_ver = mydata[1];
5 m_sampleData.module_num = mydata[2];
6 m_sampleData.reserved = mydata[3];
7 unsigned int netdata = *(unsigned int*)&mydata[4];
8 m_sampleData.data = ntohl(netdata);
9

10 if (m_debug) {
11 std::cerr << "magic: " << std::hex << (int)m_sampleData.magic << std::endl;
12 std::cerr << "format_ver: " << std::hex << (int)m_sampleData.format_ver << std::endl;
13 std::cerr << "module_num: " << std::hex << (int)m_sampleData.module_num << std::endl;
14 std::cerr << "reserved: " << std::hex << (int)m_sampleData.reserved << std::endl;
15 std::cerr << "data: " << std::dec << (int)m_sampleData.data << std::endl;
16 }
17

18 return 0;
19 }

The functions to decode data are bundled in the ‘decode_data’. Here, the decoded data enter the member
variable ‘m_sampleData’.

■daq stop()

1 int SampleMonitor::daq_stop()
2 {
3 std::cerr << "*** SampleMonitor::stop" << std::endl;
4

5 m_hist->Draw(); // Addition
6 m_canvas->Update(); // Addition
7

8 reset_InPort();
9

10 return 0;
11 }

The Line 5 and 6 are newly added. Their purpose is to redraw the histogram based on the
data that has been incremented by the time ‘daq_stop()’ is called. Now, the number of ‘Entries’
in the histogram, and the event bytes / 8 (1 event bytes) displayed on the terminal screen by
‘DaqOperator,’ match on the ‘stop’display.

11.4 Modification to ‘SampleMonitorComp.cpp’

Although the ‘SampleReader’ component did not require any modifications to the
‘SampleReaderComp.cpp’ with ‘main()’ function in it, the ‘SampleMonitor’ does require a
creation of ‘TApplication’ object in the ‘main()’ function since it uses ‘ROOT’ to draw the
histogram. The ‘SampleMonitorComp.cpp’ is modified as follows.

54	

12 Launch and operation check

1 int main (int argc, char** argv)
2 {
3 RTC::Manager* manager;
4 manager = RTC::Manager::init(argc, argv);
5

6 // for root application
7 TApplication theApp("App", &argc, argv); // Addition
8

9 // Initialize manager
10 manager->init(argc, argv);

11.5 Modification to Makefile

Since this component uses ‘ROOT’ to make the histogram, the positions of its include files
and libraries need to be notified to the compiler. Rewrite ‘Makefile’ as follows. First, add the
followings to the head of ‘Makefile’

ifndef ROOTSYS
$(error This program requires ROOTSYS environment variable\
but does not defined. Please define ROOTSYS as follows at\
shell prompt: "export ROOTSYS=/usr/local/root". If you don’t install\
ROOT in /usr/local/root, please substitute your ROOT root directory)
endif

This is because the ‘ROOTSYS’ environment variable is used when the ‘ROOT’ utility
program ‘root-config’ is called where ‘CPPFLAGS’ and ‘LDLIBS’ variables are set as below.
 The following lines are added for ‘CPPFLAGS’ and ‘LDLIBS’.

CPPFLAGS += -I$(shell ${ROOTSYS}/bin/root-config --incdir)
LDLIBS += $(shell ${ROOTSYS}/bin/root-config --glibs)

Since ‘root-config –glibs’ returns the value with ‘-L’ at the head for the use in ‘LDLIBS’,
there is no need to put ‘-L’ to the head of the right side. On the other hand, you need to put ‘-I’
for ‘root-config –incdir’.

Now, ‘make’ and confirm if the ‘SampleMonitorComp’ executable file is generated.

12 Launch and operation check

Now, the component development is completed, and so we make it read the data from the
emulator to display a histogram on the screen.

We describe how to launch the component, based on the following directory structure as
mentioned in Section 5.

/home/daq/MyDaq
/home/daq/MyDaq/SampleReader

55	

12 Launch and operation check

/home/daq/MyDaq/SampleMonitor

As described in the “DAQ-Middleware 1.1.0 Technical Manual” [2], ‘DaqOperator’ controls
the DAQ system in DAQ-Middleware. The ‘DaqOperator’ commands the connection as well as
the data collection start & finish of the components already launched. The ways to boot each
component include a network boot using ‘xinetd’. Here, the boot is done with the local boot
function of the ‘/usr/bin/run.py’ command included in the DAQ-Middleware.

In the DAQ-Middleware, the DAQ system is configurable using ‘XML’ documents. For the
details, see the “DAQ-Middleware 1.1.0 Technical Manual” [2]. Here, we copy
‘/usr/share/daqmw/ conf/sample.xml’ for our use.

% cd
% pwd
/home/daq/MyDaq
% cp /usr/share/daqmw/conf/sample.xml .

If you have your directory structure as assumed in this document, there is no need to modify it.
However, if it is not so, the following modifications are needed.

• Replace the two ‘execPath’s with the path name of the component files.

The code part of ‘/usr/share/daqmw/conf/sample.xml’ is shown below.

1 <configInfo>
2 <daqOperator>
3 <hostAddr>127.0.0.1</hostAddr>
4 </daqOperator>
5 <daqGroups>
6 <daqGroup gid="group0">
7 <components>
8 <component cid="SampleReader0">
9 <hostAddr>127.0.0.1</hostAddr>

10 <hostPort>50000</hostPort>
11 <instName>SampleReader0.rtc</instName>
12 <execPath>/home/daq/MyDaq/SampleReader/SampleReaderComp</execPath>
13 <confFile>/tmp/daqmw/rtc.conf</confFile>
14 <startOrd>2</startOrd>
15 <inPorts>
16 </inPorts>
17 <outPorts>
18 <outPort>samplereader_out</outPort>
19 </outPorts>
20 <params>
21 <param pid="srcAddr">127.0.0.1</param>
22 <param pid="srcPort">2222</param>
23 </params>
24 </component>
25 <component cid="SampleMonitor0">

56	

12 Launch and operation check

26 <hostAddr>127.0.0.1</hostAddr>
27 <hostPort>50000</hostPort>
28 <instName>SampleMonitor0.rtc</instName>
29 <execPath>/home/daq/MyDaq/SampleMonitor/SampleMonitorComp</execPath>
30 <confFile>/tmp/daqmw/rtc.conf</confFile>
31 <startOrd>1</startOrd>
32 <inPorts>
33 <inPort from="SampleReader0:samplereader_out">samplemonitor_in</inPort>
34 </inPorts>
35 <outPorts>
36 </outPorts>
37 <params>
38 </params>
39 </component>
40 </components>
41 </daqGroup>
42 </daqGroups>
43 </configInfo>

The ‘OutPorts’ on Line 17 designates an ‘OutPort’ that the ‘SampleReader’ component has. Also,
‘params’ on Line 20 designates the emulator’s IP address and port specified by the
‘SampleReader’ component as its parameters. In ‘SampleReader’ component source file
(‘SampleReader.cpp’), ‘parse_params()’ acquires the value specified here. ‘InPorts’ on Line 32
designates an ‘InPort’ that the ‘SampleMonitor’ component has. For the details about the other
tags, see the “DAQ-Middleware 1.1.0 Technical Manual” [2].

Now, we launch it.
You need to have the emulator launched by opening the emulator-launch terminal.

% daqmw-emulator

Start ‘run.py’ as follows.

% cd /home/daq/MyDaq
% ls
SampleReader SampleMonitor emulator sample.xml
% run.py -c -l sample.xml

The option ‘-c’ of ‘run.py’ is the one to launch ‘DaqOperator’ in console mode. With this
option specified, ‘DaqOperator’ will display the number of data bytes handled by each component,
regularly (each component regularly reports the number of data bytes it processed, to
‘DaqOperator’). ‘-l’ option of ‘run.py’ looks for the path of the component to be started from
‘sample.xml’, and then start it in the path on the local computer.

Wait for a while after the launch of ‘run.py’ (approx. 4 seconds depending on CPU
performance of computer), and then the screen below will be displayed. The ‘DaqOperator’
outputs these characters, and it waits for command key input in this state.

57	

12 Launch and operation check

Available commands are displayed on Line 1 titled ‘Command:’. Pressing number key
corresponds to command input. State transition needs to be done one by one sequentially. For
example, pressing ‘start’ will be judged inadequate input in this state. With a command input,
‘DaqOperator’ sends a transition command to each component. In this state immediately after
the launch of ‘run.py’, components are in ‘UNCONFIGURED’ in Fig. 3 state transition chart.

Command: 0:configure 1:start 2:stop 3:unconfigure 4:pause 5:resume

RUN NO: 0
start at: stop at:

GROUP:COMP_NAME EVENT SIZE STATE COMP STATUS

group0:SampleReader0: 0 LOADED WORKING
group0:SampleMonitor0: 0 LOADED WORKING

After pressing 0 in this state and waiting for a while, the components will transits to the
‘CONFIGURED’ state.

Command: 0:configure 1:start 2:stop 3:unconfigure 4:pause 5:resume

RUN NO: 0
start at: stop at:

GROUP:COMP_NAME EVEN

T
SIZE STATE COMP STATUS

group0:SampleReader0: 0 CONFIGURED WORKING
group0:SampleMonitor0: 0 CONFIGURED WORKING

Next, with pressing 1, it asks you the run number. So, input any proper number e.g. 1. Now,
the ‘DaqComponent’ commands ‘start’ to ‘SampleReader’ and ‘SampleMonitor’.
‘DaqOperator’ displays on the screen the number of processed data bytes reported by each
component, and updates it every few seconds. Here, with the value (30) of the
‘m_monitor_update_rate’ given in this code, the histogram is updated every 4 seconds. To
terminate the components, press 2 to transit each of them to the ‘STOP’ state. The screen state
at this moment is shown in Fig. 9.

After pressing 2 to ‘stop’ the component, pressing ‘Ctrl-C’ sends ‘SIGINT’ to
‘DaqOperator’ to terminate. ‘SIGINT’ is sent also to the component launched by ‘run.py’ at
the same time it is sent to ‘DaqOperator’ (because ‘DaqOperator’ and each component
launched by ‘run.py’ belong to the same process group). Since normally the components ‘exit’s
earlier and’DaqOperator’ will attempt to connect to them several times, the following lines will
be displayed on the screen for the number of components after pressing ‘Ctrl-C’.

ERROR: : cannot connect
ERROR: : cannot connect

After a while, ‘DaqOperator’ terminates.

The update frequency of the histogram is specified with the value of the
‘m_monitor_update_rate’.

Decreasing the value in the parentheses of the ‘m_monitor_update_date()’ at the
initialization part in the ‘SampleMonitor.cpp’ below will increase the update frequency.

58	

12 Launch and operation check

1 SampleMonitor::SampleMonitor(RTC::Manager* manager)
2 : DAQMW::DaqComponentBase(manager),
3 m_InPort("samplemonitor_in", m_in_data),

59	

12 Launch and operation check

Fig. 9 The screen of data collection terminated. The terminal that has launched the
emulator is minimized and contained in the bottom panel.

4 m_in_status(BUF_SUCCESS),
5 m_canvas(0), // Addition
6 m_hist(0), // Addition
7 m_bin(0), // Addition
8 m_min(0), // Addition
9 m_max(0), // Addition

10 m_monitor_update_rate(30), // Addition
11 m_event_byte_size(0), // Addition
12 m_debug(false)

This code requires some modifications and a recompile to change the update frequency (Try to
change the value and see). To change the frequency without a recompile, you need to use the
‘Condition’ database in the DAQ-Middleware described in the next Section.

60	

13 To make ‘Condition’ database of parameters

13 To make ‘Condition’ database of parameters

DAQ-Middleware has a framework called ‘Condition’ database to provide the system

with the parameters varying for each run. In the ‘SampleMonitor’ component in the previous
Section, it required some modification of the source code to change as shown below

• The number of bins in the histogram
• The minimum value of the histogram
• The maximum value of the histogram
• The update frequency of the histogram

that were unadjustable on the run-screen. Using ‘Condition’ database enables the parameter

change without such modifications to the source code.
For the details about ‘Condition’ database, see the separate manual “’Condition’ database

development manual” [3]. Here, we set the parameters of the above histogram according to
the “Implementation using ‘class’” in this manual. The timing to set the parameters will be
determined on ‘daq_start()’.

The source files modified as described below are under the
‘/usr/share/daqmw/examples/ConditionSampleMonitor’ directory. These have been modified
based on the ‘/usr/share/daqmw/examples/SampleMonitor’, and for example, the modification
will be displayed when the followings are executed.

% cd /usr/share/daqmw/examples
% diff -uprN SampleMonitor ConditionSampleMonitor

Also, the sample of ‘condition.xml’ is in ‘/usr/share/ daqmw/conf/condition.xml’. Below, we
copy the source file of ‘SampleMonitor’ previously described, and modify it so that it can use
the ‘Condition’ database.

% cd
% cd MyDaq
% cp -r SampleMonitor ConditionSampleMonitor
% cd ConditionSampleMonitor

Newly generate ‘ConditionSampleMonitor.h’ and ‘ConditionSampleMonitor.cpp’ files, and,
within these, create the ‘ConditionSampleMonitor’ class to acquire the variables that retains the
parameters as well as the parameters themselves. Also, it needs to link the ‘JsonSpirit’ library
and ‘boost-regex’ library so that the ‘DAQ’ component can read the ‘Condition’ database.
Then, modify ‘Makefile’ together with the part for the additional source files. The
modifications are the following two points.

l Link the ‘JsonSpirit’ library and the ‘boost_regex’ library.
l Add the additional source file ‘ConditionSampleMonitor.cpp’ to SRCS.

61	

13 To make ‘Condition’ database of parameters

SRCS += ConditionSampleMonitor.cpp
ConditionSampleMonitor.o: ConditionSampleMonitor.h ConditionSampleMonitor.cpp
LDLIBS += -L/usr/lib/daqmw -lJsonSpirit -lboost_regex

The data structure of the parameters is defined with structure ‘monitorParam’ in the
‘ConditionSampleMonitor.h’.

1 #ifndef _CONDITION_SAMPLEMONITOR_H
2 #define _CONDITION_SAMPLEMONITOR_H 1
3

4 #include <string>
5 #include "Condition.h"
6

7 struct monitorParam {
8 unsigned int hist_bin;
9 unsigned int hist_min;

10 unsigned int hist_max;
11 unsigned int monitor_update_rate;
12 };
13

14 typedef struct monitorParam monitorParam;
15

16 class ConditionSampleMonitor : public Condition {
17 public:
18 ConditionSampleMonitor();
19 virtual ~ConditionSampleMonitor();
20 bool initialize(std::string filename);
21 bool getParam(std::string prefix, monitorParam* monitorParam);
22 private:
23 Json2ConList m_json2ConList;
24 conList m_conListSampleMonitor;
25 };
26

27 #endif

Next, the method to read ‘condition.json’ file and set the parameters to the ‘monitorParam’
structure variable, is added to ‘ConditionSampleMonitor.cpp’.

1 #include "ConditionSampleMonitor.h"
2

3 ConditionSampleMonitor::ConditionSampleMonitor() {}
4 ConditionSampleMonitor::~ConditionSampleMonitor() {}
5
6 bool
7 ConditionSampleMonitor::getParam(std::string prefix, monitorParam* monitorParam)
8 {
9 setPrefix(prefix);

10 unsigned int hist_bin;
11 unsigned int hist_min;
12 unsigned int hist_max;
13 unsigned int monitor_update_rate;
14

15 if (find("hist_bin", &hist_bin)) {
16 monitorParam->hist_bin = hist_bin;

62	

13 To make ‘Condition’ database of parameters

17 }
18 else {
19 std::cerr << prefix + " hist_bin not fould" << std::endl;
20 return false;
21 }
22

23 if (find("hist_min", &hist_min)) {
24 monitorParam->hist_min = hist_min;
25 }
26 else {
27 std::cerr << prefix + " hist_min not fould" << std::endl;
28 return false;
29 }
30

31 if (find("hist_max", &hist_max)) {
32 monitorParam->hist_max = hist_max;
33 }
34 else {
35 std::cerr << prefix + " hist_max not fould" << std::endl;
36 return false;
37 }
38

39 if (find("monitor_update_rate", &monitor_update_rate)) {
40 monitorParam->monitor_update_rate = monitor_update_rate;
41 }
42 else {
43 std::cerr << prefix + " monitor_update_rate not fould" << std::endl;
44 return false;
45 }
46

47 return true;
48 }
49

50 bool ConditionSampleMonitor::initialize(std::string filename)
51 {
52 if (m_json2ConList.makeConList(filename, &m_conListSampleMonitor) == false) {
53 std::cerr << "### ERROR: Fail to read the Condition file "
54 << filename << std::endl;
55 }
56 init(&m_conListSampleMonitor);
57 return true;
58 }

Now, the ‘ConditionSampleMonitor’ class has been prepared.

Subsequently, modify ‘SampleMonitor’ to acquire the histogram parameters using the
‘Condition’ database. First, the ‘Condition’ database filename ‘CONDITION_FILE’ as well as
the structure ‘m_monitorParam’ that retains the parameters are added to ‘SampleMonitor.h’:

////////// ROOT Histogram //////////
TCanvas *m_canvas;
TH1F *m_hist;
unsigned char m_recv_data[4096];
unsigned int m_event_byte_size;
struct sampleData m_sampleData;
///////// Condition database ////////
static const std::string CONDITION_FILE; // Addition

63	

13 To make ‘Condition’ database of parameters

monitorParam m_monitorParam; // Addition

bool m_debug;

};

Further, substitute the values below for ‘CONDITION_FILE’ in ‘SampleMonitor.cpp’.

static const char* samplemonitor_spec[] =
{

"implementation_id", "SampleMonitor",
"type_name", "SampleMonitor",
"description", "SampleMonitor component",
"version", "1.0",
"vendor", "Kazuo Nakayoshi, KEK",
"category", "example",
"activity_type", "DataFlowComponent",
"max_instance", "1",
"language", "C++",
"lang_type", "compile", ""

};

const std::string SampleMonitor::CONDITION_FILE = "./condition.json"; // Addition

Next, modify the ‘DAQ’ component source file so that it can use this class.
First, modify the ‘SampleMonitor.cpp’ to include ‘conditionSampleMonitor.h’.

#include "SampleMonitor.h"
#include "ConditionSampleMonitor.h" // Addition

Next, the ‘set_condition()’ function is added in the ‘SampleMonitor.cpp’ so that the
‘ConditionSampleMonitor’ class acquires the parameters. Also, ‘daq_start()’ is coded to
call the ‘set_condition()’.

// Whole this function is added.
int set_condition(std::string condition_file, monitorParam *monitorParam)
{

ConditionSampleMonitor conditionSampleMonitor;
conditionSampleMonitor.initialize(condition_file);
if (conditionSampleMonitor.getParam("common_SampleMonitor_", monitorParam)) {
std::cerr << "condition OK" << std::endl;
}
else {

throw "SampleMonitor condition error";
}

return 0;

}

int SampleMonitor::daq_start()
{

std::cerr << "*** SampleMonitor::start" << std::endl;

64	

13 To make ‘Condition’ database of parameters

m_in_status = BUF_SUCCESS;

try { // Addition

set_condition(CONDITION_FILE, &m_monitorParam); // Addition
} // Addition
catch (std::string error_message) { // Addition

std::cerr << error_message << std::endl; // Addition
fatal_error_report(USER_DEFINED_ERROR1, "Condition error"); // Addition

} // Addition
catch (...) { // Addition

std::cerr << "unknown error" << std::endl; // Addition
fatal_error_report(USER_DEFINED_ERROR1, "Unknown error"); // Addition

} // Addition

Further, modify the argument ‘TH1F()’ so that these acquired values are used as the
number of bins, minimum and maximum values of the histogram. Also, modify the part
determining the timing to update the histogram.

m_hist = new TH1F("hist", "hist",
m_monitorParam.hist_bin, // Change argument
m_monitorParam.hist_min, // Change argument
m_monitorParam.hist_max); // Change argument

unsigned long sequence_num = get_sequence_num();
if ((sequence_num % m_monitorParam.monitor_update_rate) == 0) { // Change

m_hist->Draw();
m_canvas->Update();

}

Then, delete the part initializing ‘m_hist_bin’ etc. from the constructor of the
‘SampleMonitor’.

SampleMonitor::SampleMonitor(RTC::Manager* manager)
: DAQMW::DaqComponentBase(manager),

m_InPort("samplemonitor_in", m_in_data),
m_in_status(BUF_SUCCESS),
m_canvas(0),
m_hist(0),

// The initializations of ‘m_hist_bin’, ‘m_hist_min, m_hist_max’, ‘m_monitor_update_rate’ // have been deleted.
m_event_byte_size(0),
m_debug(false)

13.1 Histogram test using the ‘Condition’ database

The parameter values are given in ‘condition.xml’. Copy the samples in the
‘/usr/share/daqmw/conf/ condition.xml’ to the ‘/home/daq/MyDaq’ directory.

% cd /home/daq/MyDaq
% cp /usr/share/daqmw/conf/condition.xml .

65	

13 To make ‘Condition’ database of parameters

The component reads the file ‘condition.json’ which has been converted to JSON

format but not this xml file directly. The conversion to JSON format is done by the
command ‘condition_xml2json’.

% condition_xml2json condition.xml

This command creates ‘condition.json’ file*13. The ‘run.py -c -l sample.xml’ command
launches it, similarly to the case without the ‘Condition’ database. The path for the
component executable files has been changed (Since the directory has been changed from
‘SampleMonitor’ to ‘ConditionSampleMonitor’, the ‘execPath’ of ‘sample.xml’ needs to be
changed to the full path for the component to be launched). Below, the modification to
‘sample.xml’ is shown.

<component cid="SampleMonitor0">
<hostAddr>127.0.0.1</hostAddr>
<hostPort>50000</hostPort>
<instName>SampleMonitor0.rtc</instName>
<!-- execPath changed -->
<execPath>/home/daq/MyDaq/ConditionSampleMonitor/SampleMonitorComp</execPath>
<!-- execPath changed ^^^^^^^^^^^^^^^^^^^^^^^^ -->
<confFile>/tmp/daqmw/rtc.conf</confFile>
<startOrd>1</startOrd>
<inPorts>

<inPort from="SampleReader0:samplereader_out">samplemonitor_in</inPort>
</inPorts>
<outPorts>
</outPorts>
<params>
</params>

</component>

The ‘run.py -c -l sample.xml’ launches it similarly to the previous case*14. Confirm if the
number of bins, minimum and maximum values, etc. for the histogram are the same as those in
‘condition.xml’. After modifying the parameters of ‘condition.xml’, update ‘condition.json’ by
‘condition_xml2json condition.xml’ again and then start the component, to confirm that the
histogram has the parameters specified in ‘Condition’ file.

Fig. 10 shows an example where the number of bins, minimum and maximum values for the
histogram are set as 100, 0, 150, respectively, using the ‘Condition’ database. The 423936 bytes
displayed on the terminal by ‘DaqOperator’ shows that the total of 52992 event data was
collected. The data coming in from the emulator are centered on 100, 200, …, 800 evenly.
‘Entries’ item in the histogram on left side of the figure confirms that 6624 data, i.e. 1/8 of the
total 52992 data has been incremented to the histogram.

*13 Since this command is a shell script which uses the ‘Xalan’ command in it, the ‘xalan’ package is required.
*14 Otherwise, you can leave ‘sample.xml’ as is and copy it to ‘conditionsample.xml’. Then, modify the above ‘execPath’
to launch it by ‘run.py -c -l conditionsample.xml’.

66	

13 To make ‘Condition’ database of parameters

Fig. 10 An example where data is read with the histogram’s minimum value =
0, maximum value = 150, the number of bins = 100 set by the ‘Condition’
database. See the text of this document for the numerical value of ‘Entries’ in
the histogram.

67	

14 How to use WebUI

14 How to use WebUI

Previously, the ‘DaqOperator’ was launched in console mode and then given commands
through the keyboard. The ‘WebUI’ has been added since the DAQ-Middleware 1.1.0. In
this Section, we describe how to use it.

Up to the DAQ-Middleware 1.1.1, ‘firefox’ was the only Web browser that could be used.
Since the DAQ-Middleware 1.1.2, we can use ‘IE’, ‘firefox’, ‘chrome’ and ‘safari’.
However, in ‘IE’, “The XML document cannot be displayed (XML 文書が表示できませ
ん)” is displayed in “XML Response from DaqOperator” at the bottom of the Fig. 11, and
the XML returned from ‘DaqOperator’ is not displayed (it can still be operated manually).

14.1 Check the software package

To use the ‘WebUI’, the ‘mod_python’ package is required for ‘Scientific Linux 5.x’, and
the ‘mod_wsgi’ package is required for the other Linux distributions (including Scientific
Linux 6.x). To check if the above package is already installed, execute the following.

% rpm -q mod_python or rpm -q mod_wsgi

If the terminal says “package mod_python is not installed”, it needs to be installed using
the following command.

% su (answer root password)
yum install mod_python or yum install mod_wsgi

Right after the installation of ‘mod_python’ or ‘mod_wsgi’, ‘httpd’ cannot use them. So,
restart ‘httpd’.

service httpd restart

If ‘httpd’ is not yet launched, the terminal says “Stopping httpd: [FAILED]”. It is OK with “
Starting httpd: [OK]”.

To start ‘httpd’ automatically at every reboot, execute the following.

chkconfig httpd on

Also, ‘SELinux’ needs to be disabled since ‘WebUI’ does not operate with ‘SELinux’
enabled. For how to check if the setting is enabled and to disable it, see Appendix F.5.

68	

14 How to use WebUI

14.2 How to operate

The component starts by ‘run.py –l’ without ‘-c’.

1 [daq@localhost MyDaq]$ run.py -l sample.xml
2 Use config file sample.xml
3 Use /usr/share/daqmw/conf/config.xsd for XML schema
4 Use /usr/libexec/daqmw/DaqOperatorComp for DAQ-Operator
5 Conf file validated: sample.xml
6 start new naming service... done
7 Local Comps booting... done
8 Now booting the DAQ-Operator... done
9 [daq@localhost MyDaq]$

 The ‘pgrep’ command confirms if all the necessary components have started.

1 [daq@localhost MyDaq]$ pgrep -fl Comp
2 6189 /home/daq/MyDaq/SampleReader/SampleReaderComp -f /tmp/daqmw/rtc.conf
3 6208 /home/daq/MyDaq/SampleMonitor/SampleMonitorComp -f /tmp/daqmw/rtc.conf
4 6217 /usr/libexec/daqmw/DaqOperatorComp -f ./rtc.conf -h 127.0.0.1 -p 9876 -x sample.xml
5 [daq@localhost MyDaq]$

The numbers displayed at the head of the above lines, are process IDs. Here, you see that all the
components necessary in this example system (‘SampleReader’, ‘SampleMonitor’,
‘DaqOperator’) have started.

Now, launch your Web browser (Clicking the icon on the right side to ‘System’ on the upper
panel will start it.) to access ‘http://localhost/daqmw/operatorPanel/operatorPanel0.html’. The
screen state at this moment is shown in Fig. 11.

On the Web screen, from its top, ‘Current Status’, ‘Run Number’ entry field, DAQ button,
‘DAQ status’ and XML response from ‘DaqOperator’ are displayed.

The ‘Run Number’ is automatically incremented each time a run terminates. Also, you can
specify the number manually. Inputting the number in the number field and pressing the “save
runNumber” button will save it.

Pressing the DAQ button gives the command to ‘DaqOperator’. At that time, the button that
can be pressed is determined by ‘state’. The green buttons are the currently usable. .

The component name, current ‘State’, ‘Status’ and the number of events are displayed in the
‘DAQ status’ field.

Pressing the ‘Configure’ button in this state and subsequently the ‘Begin’ button will start a
data collection to draw the histogram. The screen at this moment is shown in Fig. 12. To
terminate, press the ‘End’ button. Pressing the ‘Begin’ button subsequently will start another
data collection as a next run. After the ‘End’ button, pressing the ‘Unconfigure’ button will
make a transition to the ‘LOADED’ state, and the ‘State’ field in the ‘DAQ Status’ will show
‘LOADED’.

69	

14 How to use WebUI

Fig. 11 WebUI, now running the emulator (it is running in the terminal titled
‘Emulator’ stored in the bottom panel) to start each component by ‘run.py -l
sample.xml’, and access
‘http://localhost/daqmw/operatorPanel/operatorPanel0.html’ with Web
browser.

To stop the component process, use the ‘pkill’ command from the command line. Since
the ‘pkill’ command refers to the process name of no more than 15 characters by default,
simply executing the “pkill Comp” may not send the ‘SIGTERM’ to the component. In
order to make the ‘pkill’ command to refer to the full name of each process, execute it with ‘-
f’.

% pkill -f Comp

70	

14 How to use WebUI

Fig. 12 The screen state at ‘RUNNING’, the histogram on left side is regularly
updated.

71	

Appendix A About the libraries provided with DAQ-Middleware

Appendix A About the libraries provided with DAQ-Middleware

The DAQ-Middleware provides the library possibly and commonly used in any of the
DAQ systems. The follow are currently provided.

• The socket library written in C
• The library for ‘SiTCP Bus Control Protocol (BCP)’ written in C
• The socket library written in C++
• The ‘JsonSpirit’ library used in the ‘Condition’ database

The include files are installed in ‘/usr/include/daqmw’. Also, the shared library files and static
library files are installed in ‘/usr/lib/daqmw’ for 32 bit Scientific Linux (SL) and
‘/usr/lib64/daqmw’ for 64 bit SL. These are installed in original directories due to their
relatively large number of files and also for the purpose to separate them from the library
files provided by OS and the other application packages.

Since ‘/usr/lib/daqmw’ is not a standard directory like ‘/usr/lib’ which ‘ld.so’ refers
to, you need to command ‘ld.so’to search ‘/usr/lib/daqmw’ as well as the following, when
you run the component using these libraries.

(1) To use environment variable ‘LD_LIBRARY_PATH’

The ‘/usr/lib/daqmw’ for 32bit SL or ‘/usr/lib64/daqmw’ for 64bit SL is added to the
environment variable ‘LD_LIBRARY_PATH’. When you network-boot using ‘xinetd’,
although this is not seen in this manual, ‘LD_LIBRARY_PATH’ is not set to the environment
variable for the process started on a remote computer. So, if you use ‘LD_LIBRARY_PATH’,
you need to avoid this in by including setting ‘env’ attribute in the settings file of ‘xinetd’ (the
file under ‘/etc/xinetd.d/’ directory).

(2) To use ‘ld.so’ settings file
In ‘Scientific Linux’, creating the files under ‘/etc/ld.so.conf.d/’ and designating the directory

having the shared library files for them, will enable ‘ld.so’ to search in the designated directory
as well. To use this function, create the ‘/etc/ld.so.conf.d/daqmw.conf’ file and then write the
‘/usr/lib/daqmw’ for 32bit SL or ‘/usr/lib64/daqmw’ for 64bit SL, therein. To enable this
function immediately after creating the file, you need to execute the following once as the
‘root’ user.

root# ldconfig

72	

Appendix A About the libraries provided with DAQ-Middleware

After rebooting, the function is enabled automatically. So, you do not need to execute the
‘ldconfig’ command for every reboot.

The place to put the file to write in the settings is different for OSs. In most Linux, it is
placed in ‘/etc/ld.so.conf’ or the files under the ‘/etc/ld.so.conf.d/’ directory read out by
‘/etc/ld.so.conf’.

The DAQ-Middleware has adopted the latter way to place the settings file in the
‘/etc/ld.so.conf.d/’ directory. The advantages of this method are that each user does not need
to consider the value of the environment variable ‘LD_LIBRARY_PATH’ for a run, and that
the user does not need to elaborately pass ‘LD_LIBRARY_PATH’ to multiple computers at
the component’s start when any data collection is distributed to them (in the case of the above
‘xinetd’, using ‘env’ attribute, etc.).

When installing from the source files, the system checks the presence of the
‘/etc/ld.so.conf.d/’ directory at ‘make install’ and, if there, generates the ‘daqmw.conf’ file.
In the file, ‘/usr/lib64/daqmw’ will be written if the ‘/usr/lib64/’ directory is present, or
otherwise, without the directory, ‘/usr/lib/daqmw/’.

73	

Appendix B Update history of this manual

Appendix B Update history of this manual

The update history of this manual is summarized below.

2010-08

• Initial revision
• For DAQ-Middleware 1.0.0
• Used in the DAQ-Middleware lecture held in August 2010.

2011-01

• Bundled in DAQ-Middleware 1.0.1(/usr/share/daqmw/docs/DAQ-

Middleware-DevManual.pdf)
• Added the outline of DAQ-Middleware

2011-02

• Changed the title for DAQ-Middleware 1.0.2
• No updates to the contents since the manual for 1.0.1.

2011-06

• Updated for DAQ-Middleware 1.1.0 supporting 64bit.
• Added the description for WebUI added since DAQ-Middleware 1.1.0.
• Added tips for compiling from source files.
• Miscellaneous corrections of characters and phrases, etc.

2011-10

• Added reboot set-up method.
• Added installation of Scientific Linux 5.x.

2012-04

• Update for DAQ-Middleware 1.2.0.

74	

Appendix C Log generated on the set-up using ‘rpm’ and ‘yum’ commands

Appendix C Log generated on the set-up using ‘rpm’ and ‘yum’ commands

[root@localhost ~]# rpm -ihv http://daqmw.kek.jp/rpm/el5/noarch/
(→) kek-daqmiddleware-repo-2-0.noarch.rpm (Returning this too long line with (→))
Retrieving http://daqmw.kek.jp/rpm/el5/noarch/kek-daqmiddleware-repo-2-0.noarch.rpm
Preparing... ### [100%]

1:kek-daqmiddleware-repo ### [100%]
[root@localhost ~]# yum --enablerepo=kek-daqmiddleware install DAQ-Middleware
Loaded plugins: kernel-module
kek-daqmiddleware | 951 B 00:00
kek-daqmiddleware/primary | 5.1 kB 00:00
kek-daqmiddleware 15/15
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package DAQ-Middleware.i386 0:1.0.0-0.el5 set to be updated
--> Processing Dependency: OpenRTM-aist >= 1.0.0 for package: DAQ-Middleware
--> Processing Dependency: xerces-c-devel for package: DAQ-Middleware
--> Processing Dependency: libomniDynamic4.so.0 for package: DAQ-Middleware
--> Processing Dependency: libcoil.so.0 for package: DAQ-Middleware
--> Processing Dependency: libRTC-1.0.0.so.0 for package: DAQ-Middleware
--> Processing Dependency: xalan-c-devel for package: DAQ-Middleware
--> Processing Dependency: libxerces-c.so.27 for package: DAQ-Middleware
--> Processing Dependency: libomniORB4.so.0 for package: DAQ-Middleware
--> Processing Dependency: libomnithread.so.3 for package: DAQ-Middleware
--> Running transaction check
---> Package OpenRTM-aist.i386 0:1.0.0-2.el5 set to be updated
--> Processing Dependency: omniORB-doc for package: OpenRTM-aist
--> Processing Dependency: omniORB-bootscripts for package: OpenRTM-aist
--> Processing Dependency: omniORB-utils for package: OpenRTM-aist
--> Processing Dependency: omniORB-servers for package: OpenRTM-aist
--> Processing Dependency: omniORB-devel for package: OpenRTM-aist
---> Package omniORB.i386 0:4.0.7-4.el5 set to be updated
---> Package xalan-c-devel.i386 0:1.10.0-2.el5 set to be updated
--> Processing Dependency: xalan-c = 1.10.0-2.el5 for package: xalan-c-devel
--> Processing Dependency: libxalanMsg.so.110 for package: xalan-c-devel
--> Processing Dependency: libxalan-c.so.110 for package: xalan-c-devel
---> Package xerces-c.i386 0:2.7.0-1.el5.rf set to be updated
---> Package xerces-c-devel.i386 0:2.7.0-1.el5.rf set to be updated
--> Running transaction check
---> Package omniORB-bootscripts.i386 0:4.0.7-4.el5 set to be updated
---> Package omniORB-devel.i386 0:4.0.7-4.el5 set to be updated
---> Package omniORB-doc.i386 0:4.0.7-4.el5 set to be updated
---> Package omniORB-servers.i386 0:4.0.7-4.el5 set to be updated
---> Package omniORB-utils.i386 0:4.0.7-4.el5 set to be updated
---> Package xalan-c.i386 0:1.10.0-2.el5 set to be updated
--> Finished Dependency Resolution
Beginning Kernel Module Plugin
Finished Kernel Module Plugin

Dependencies Resolved

==

Package Arch Version Repository Size
===
===========

75	

Appendix C Log generated on the set-up using ‘rpm’ and ‘yum’ commands

Installing:

DAQ-Middleware i386 1.0.0-0.el5 kek-daqmiddleware 1.0 M
Installing for dependencies:

OpenRTM-aist i386 1.0.0-2.el5 kek-daqmiddleware 6.6 M
omniORB i386 4.0.7-4.el5 kek-daqmiddleware 6.4 M
omniORB-bootscripts i386 4.0.7-4.el5 kek-daqmiddleware 6.1 k
omniORB-devel i386 4.0.7-4.el5 kek-daqmiddleware 2.9 M
omniORB-doc i386 4.0.7-4.el5 kek-daqmiddleware 986 k
omniORB-servers i386 4.0.7-4.el5 kek-daqmiddleware 59 k
omniORB-utils i386 4.0.7-4.el5 kek-daqmiddleware 37 k
xalan-c i386 1.10.0-2.el5 kek-daqmiddleware 1.2 M
xalan-c-devel i386 1.10.0-2.el5 kek-daqmiddleware 443 k
xerces-c i386 2.7.0-1.el5.rf kek-daqmiddleware 1.6 M
xerces-c-devel i386 2.7.0-1.el5.rf kek-daqmiddleware 649 k

Transaction Summary
==
Install 12 Package(s)
Upgrade 0 Package(s)

Total download size: 22 M
Is this ok [y/N]: y (Input y)
Downloading Packages:
(1/12): omniORB-bootscripts-4.0.7-4.el5.i386.rpm | 6.1 kB 00:00
(2/12): omniORB-utils-4.0.7-4.el5.i386.rpm | 37 kB 00:00
(3/12): omniORB-servers-4.0.7-4.el5.i386.rpm | 59 kB 00:00
(4/12): xalan-c-devel-1.10.0-2.el5.i386.rpm | 443 kB 00:00
(5/12): xerces-c-devel-2.7.0-1.el5.rf.i386.rpm | 649 kB 00:00
(6/12): omniORB-doc-4.0.7-4.el5.i386.rpm | 986 kB 00:00
(7/12): DAQ-Middleware-1.0.0-0.el5.i386.rpm | 1.0 MB 00:00
(8/12): xalan-c-1.10.0-2.el5.i386.rpm | 1.2 MB 00:00
(9/12): xerces-c-2.7.0-1.el5.rf.i386.rpm | 1.6 MB 00:00
(10/12): omniORB-devel-4.0.7-4.el5.i386.rpm | 2.9 MB 00:00
(11/12): omniORB-4.0.7-4.el5.i386.rpm | 6.4 MB 00:00
(12/12): OpenRTM-aist-1.0.0-2.el5.i386.rpm | 6.6 MB 00:00

--
Total 10 MB/s | 22 MB 00:02
Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction

Installing : omniORB 1/12
Installing : xerces-c 2/12
Installing : xerces-c-devel 3/12
Installing : omniORB-doc 4/12
Installing : omniORB-utils 5/12
Installing : omniORB-servers 6/12
Installing : xalan-c 7/12
Installing : omniORB-devel 8/12
Installing : xalan-c-devel 9/12
Installing : omniORB-bootscripts 10/12
Installing : OpenRTM-aist 11/12
Installing : DAQ-Middleware 12/12

Installed:

DAQ-Middleware.i386 0:1.0.0-0.el5

Dependency Installed:
OpenRTM-aist.i386 0:1.0.0-2.el5 omniORB.i386 0:4.0.7-4.el5

76	

Appendix C Log generated on the set-up using ‘rpm’ and ‘yum’ commands

omniORB-bootscripts.i386 0:4.0.7-4.el5 omniORB-devel.i386 0:4.0.7-4.el5
omniORB-doc.i386 0:4.0.7-4.el5 omniORB-servers.i386 0:4.0.7-4.el5
omniORB-utils.i386 0:4.0.7-4.el5 xalan-c.i386 0:1.10.0-2.el5
xalan-c-devel.i386 0:1.10.0-2.el5 xerces-c.i386 0:2.7.0-1.el5.rf
xerces-c-devel.i386 0:2.7.0-1.el5.rf

Complete!
[root@localhost ~]#

77	

Appendix D Tips for the installation from source files

Appendix D Tips for the installation from source files

It is easier to use the ‘RPM’ binaries to set up the middleware to the ‘Scientific Linux’,
‘CentOS’, ‘RedHat Enterprise Linux (5.x, 6.x). Since the binaries for the other OSs have not
yet been provided, you need to compile the DAQ-Middleware from the source files if you
want to use it on those OSs. This Section summarizes the tips for the installation of the
DAQ-Middleware from the source files.

The following software are required to run the DAQ-Middleware. If these softwares are
included in your OS distribution, it should be easier to install them.

• A set of omniORB (4.1.x)
• OpenRTM-aist 1.0.0 + patch
• xerces-c 2.x or 3.x
• xalan-c 1.10
• boost

The DAQ-Middleware uses ‘OpenRTM-aist’ for its basis. The ‘OpenRTM-aist’ uses
‘omniORB’. Also, DAQ-Middleware uses ‘xerces-c’ for its XML-related library. It uses
‘xalan-c’ and ‘boost’ to convert XML to the json file for the ‘Condition’ database. Some
sample components use ‘boost’.

The ‘omniORB’ requires a development environment, such as ‘omniidl’ and
‘omniNames’ to operate. The ‘omniNames’ may automatically start at reboot if you have
installed the one provided from your OS distribution. In order to prevent any troubles
concerning ‘omniNames’ in your development, the started ‘run.py’ stops ‘omniNames’ once
and then restarts it. The automatic start of ‘omniNames’ needs to be set disabled since the
developer user’s authority often cannot stop it with its enabled automatic start on OS launch.
In ‘RHEL’ system, execute “chkconfig omniNames off” as ‘root’ user.

The ‘xerces-c’ is compliant to both 2.x and 3.x. ‘xalan-c’ uses ‘xerces-c’. When using
the binaries provided by your Linux distribution, you need to install ‘xalan-c’ with its version
matched to that of ‘xerces-c’.

The patch for ‘OpenRTM-aist’ is included in ‘OpenRTM-aist-1.0. 0-X.r1971.el5.src.rpm’
located at ‘http://daqmw.kek.jp/rpm/SRPMS/’. Since this ‘SRPM’ file also includes the files
equivalent to ‘OpenRTM-aist-1.0.0’, extract the desired files by the ‘rpm2cpio’ command and
work as follows. The ‘Autotools’ is required for this work.

tar xf OpenRTM-aist-r1971.tar.gz cd
OpenRTM-aist-r1971

78	

Appendix D Tips for the installation from source files

Apply all the patches included in ‘SRPMS’ (concrete commands are omitted here)
sh build/autogen
./configure --prefix=/usr (Change the value for ‘--prefix’ as required)
make
make install

After these preparations are completed, obtain the source files for the DAQ-Middleware
from ‘http://daqmw.kek.jp/src/’ to expand and then execute the following.

make
make install

You can use the ‘uninstall’ target of ‘Makefile’ to uninstall the middleware.

cd DAQ-Middleware-1.x.y
make uninstall

79	

Appendix E Remote boot set-up

OperatorPC

run.py

DaqOperator

192.168.0.1

EmulatorPC

Emulator

192.168.0.2

ReaderPC

Sample
Reader

192.168.0.3

MonitorPC

Sample
Monitor

192.168.0.4

Fig. 13 The arrangement of the computers for explaining the remote boot.
OperatorPC, EmulatorPC, etc. are host names. Their IP addresses are
shown below the names. The DAQ component and emulator run on each
computer is specified in the rectangles.

Appendix E Remote boot set-up

Here, we describe how to arrange the system distributing DAQ components to multiple

computers. The computer arrangement exampled in this Section is shown in Fig. 13. In the
arrangement of this example, ‘SampleReader’ is run on ‘ReaderPC’, and then the data is sent to
‘SampleReader’ running on ‘MonitorPC’ via network.

With the DAQ components distributed to multiple computers, it requires a mechanism to
start the components over the network. Here, we use ‘xinetd’.

The related files other than the ‘xinet’ program file are ‘/etc/services’,
‘/etc/xinetd.d/bootComps’ and ‘/usr/share/daqmw/etc/remote-boot/bootComps.py’.

E.1 Network communication check

Data transfer via network requires communications between each computer. You should
notice that it is not always possible to have other communications even with a ping response.
When packet filtering with ‘iptables’ etc., you can prevent problems by having it stopped*15.
To stop the packet filtering using ‘iptables’, execute the following.

root# service iptables stop

To disable it in a stopped state at the start of a component, execute the following.

root# chkconfig iptables off

*15 For the condition to stop to ensure the security packet filtering, check the security policy etc. for the network you get
connected to.

80	

Appendix E Remote boot set-up

E.2 Installation of ‘xinetd’

The ‘rpm -q xinetd’ can check if ‘xinetd’ has been installed. If it has not, install it from
your OS distribution repository by executing the following.

root# yum install xinetd

It is required to make ‘xinetd’ available on all the computers that start DAQ components. In
the example of fig. 13, ‘xinetd’ is needed for ‘ReaderPC’ and ‘MonitorPC’.

E.3 Set-up of ‘xinetd’

Add ‘bootComps’ to ‘/etc/services—‘using the following command (Notice that ‘>>’ of two
‘>’s is needed instead of one single ‘>’).

root# cat /usr/share/daqmw/etc/remote-boot/services.sample >> /etc/services

Create ‘/etc/xinetd.d/bootComps’ defining the program started by ‘xinetd’ as follows (Since
one command line is too long, it is returned with (→). However, input the command just in
one line when executing).

root# cp /usr/share/daqmw/etc/remote-boot/bootComps-xinetd.sample (→)
/etc/xinetd.d/bootComps

To start ‘xinetd’, execute the following.

root# service xinetd restart

After the screen below appears, confirm if ‘xinetd’ has normally started by referring to
‘/var/log/messages’.

root# service xinetd restart
Stopping xinetd: [FAILED] (When ‘xinetd’ has not started, it shows FAILED.
Starting xinetd: [OK] If ‘Starting xinetd’ shows OK, it is successful.)
root#

If an error appears, make the necessary corrections with reference to the output messages.
To check if it is indeed operable, execute the following from the other computer (Replace
‘remote-host’ with any host name or its IP address to which ‘xinetd’ was set up).

% echo hello | nc remote-host 50000

Now, if the following screen is output, it was successful.

81	

Appendix E Remote boot set-up

-1 need more info.

When this screen is not displayed, check ‘/var/log/messages’ on the computer on which you
set the ‘xinetd’ startable, or check if any packet filtering is running but the packet has not
been delivered, etc. The registration of user ‘daq’ is required on the computers that start
DAQ components since ‘bootComps-xinetd.sample’ starts them under the ‘daq’ user
authority (To change the user name, modify the right side of ‘user =’ in
‘/etc/xinetd.d/bootComps’). To start ‘xinetd’ automatically at every boot, execute the
following.

root# chkconfig xinetd on

Even when you start the DAQ components on the computer that runs run.py, you still need
to do it via ‘xinetd’.

The DAQ component logs are generated in ‘/tmp/daqmw/’ directory. The log is generated
under the process authority of the DAQ component. If you have any ‘/tmp/daqmw/’ directory
owned by another user, delete the logs together with the directory.

E.4 Creating configuration file

The configuration file for the arrangement of Fig. 13 is shown in Fig. 14.
‘execPath’ specifies the location of the DAQ component program files.The information
including the computer that operates a name server when starting the DAQ component, is
written in ‘confFile’. The ‘run.py’ automatically generates it and then sends it to the remote
computer. Since the location of ‘confFile’ is fixed to ‘/tmp/daqmw/rtc.conf’ in ‘run.py’, any
settings for it specified in a configuration file will be ignored.

E.5 System launch

To start the system, execute the following assuming the configuration file as ‘remote.xml’,
after starting ‘Emulator’.

daq% run.py -c remote.xml

Although the histogram by ‘SampleMonitor’ is not drawn anywhere on the screen without
the permission from X-Window by default, you can check the normal data-reading by
referring to the number of events displayed by ‘DaqOperator’.

82	

Appendix E Remote boot set-up

<configInfo>

<daqOperator>
<hostAddr>192.168.0.1</hostAddr>

</daqOperator>
<daqGroups>

<daqGroup gid="group0">
<components>

<component cid="SampleReader0">
<hostAddr>192.168.0.3</hostAddr>
<hostPort>50000</hostPort>
<instName>SampleReader0.rtc</instName>
<execPath>/home/daq/MyDaq/SampleReader/SampleReaderComp</execPath>
<confFile>/tmp/daqmw/rtc.conf</confFile>
<startOrd>2</startOrd>
<inPorts>
</inPorts>
<outPorts>

<outPort>samplereader_out</outPort>
</outPorts>
<params>

<param pid="srcAddr">192.168.0.2</param>
<param pid="srcPort">2222</param>

</params>
</component>
<component cid="SampleMonitor0">

<hostAddr>192.168.0.4</hostAddr>
<hostPort>50000</hostPort>
<instName>SampleMonitor0.rtc</instName>
<execPath>/home/daq/MyDaq/SampleMonitor/SampleMonitorComp</execPath>
<confFile>/tmp/daqmw/rtc.conf</confFile>
<startOrd>1</startOrd>
<inPorts>

<inPort from="SampleReader0:samplereader_out">samplemonitor_in</inPort>
</inPorts>
<outPorts>
</outPorts>
<params>
</params>

</component>
</components>

</daqGroup>
</daqGroups>

</configInfo>

Fig. 14 An example of the configuration file in the case of fig.13.

To display the histogram on ‘OperatorPC’, execute the following on the said computer…

daq@OpeartorPC% xhost +MonitorPC

and then…

daq@OperatorPC% run.py -d OperatorPC:0 -c remote.xml

83	

Appendix E Remote boot set-up

 xinetd

bootComps.py

OperatorPC

rtc.conf DaqOperator
Naming Service
SampleReader

run.py config.xml
SampleMonitor

 xinetd

bootComps.py

rtc.conf SampleReader

rtc.conf SampleMonitor

ReaderPC

MonitorPC

Fig. 15 The mechanism of remote boot

If the histogram is still not displayed, check if the X-Window communication has been
permitted by executing, for example, the following…

daq@OperatorPC% ssh -x MonitorPC (small letter-x disables SSH X forwarding)
daq@MonitorPC% DISPLAY=OperatorPC:0 xterm

to confirm if the X-client of ‘MonitorPC’ can be displayed on the X-Window of
‘OperatorPC’, or try setting the argument of ‘-d’ to IP address:0 or etc.

E.6 Mechanism of remote boot

The mechanism of the remote boot is shown in Fig. 15. This figure shows the boot of the
system where each of ‘DaqOperator’, ‘SampleReader’ and ‘SampleMonitor’ described in the
previous Sections runs on different computers respectively.

1. The ‘run.py’ is started from the command line. The started ‘run.py’ parses the
configuration file designated by its argument to know on which computer the DAQ
component is to be started.

2. The ‘run.py’ accesses ‘Port 50000’ of the computer starting the DAQ component to
issue a command to create ‘rtc.conf’. The ‘bootComps.py’ started by ‘xinetd’
receives this command.

84	

Appendix E Remote boot set-up

3. The ‘bootComps.py’ generates ‘rtc.conf’ and notifies to ‘run.py’ if this was successful.
4. After ‘rtc.conf’ was successfully generated on each computer, ‘run.py’ subsequently

issues a command to ‘bootComps.py’ via ‘xinetd’ to start the DAQ component.
‘config.xml’ designates the path for the component to start.

5. With reference to ‘rtc.conf’ generated on each computer, the started DAQ component
finds the computer where ‘Naming Service’ is running and then accesses the service to
register the information itself.

6. The ‘run.py’ subsequently starts ‘DaqOperator’. The ‘DaqOperator’, after its start,
grabs the system by referring to ‘config.xml’ and asks the information of each DAQ
component to the ‘Naming Service’. Then, it connects the DAQ components.

85	

Appendix F How to install Scientific Linux

Fig. 16 Selection of computer tasks

Appendix F How to install Scientific Linux

The web site of Scientific Linux is ‘http://www.scientificlinux.org/’. You can obtain the

installation CD or DVD image from this site, or the following Japanese mirror sites.

• http://ftp.riken.jp/Linux/scientific/ (Riken)
• http://ftp.ne.jp/Linux/distributions/scientificlinux/ (KDDI R&D Laboratories)
• http://ftp.jaist.ac.jp/pub/Linux/scientific/ (JAIST)
• http://reflx1.kek.jp/scientific/ (KEK (accessible only internally within KEK))

If you follow the GUI guidance, the installation should not be complicated. Just in case, we
describe below, which packages need to be installed for the DAQ component development.

F.1 New installation (SL 5.x)

In the course of installation, the screen concerning the operations needed will appear on
your machine. When the ‘Software Development’ is checked (Fig. 16), almost all the
necessary packages will be installed. To use ‘WebUI’, ‘mod_python’ is required. So, after
the installation of Scientific Linux, execute the following to install it.

86	

Appendix F How to install Scientific Linux

Fig. 17 Addition of development packages on SL 5.x

root# yum install mod_python

Also, in Scientific Linux 5.x, the above package selection will not install ‘Emacs’ as your
editor. If you need it, execute the following to install it, after the system installation.

root# yum install emacs

For the settings of SELinux and ‘iptables’, see Section F.5.

F.2 Adding the development environment later (SL 5.x)

If ‘Gnome Desktop’ is already running but any development environments (such as gcc,
make) are not yet installed, click the icon at the left end of the menu bar and launch
“Add/Remove Software” from the menu. Then, check the followings among “Development”
and apply them (Fig. 17). For the addition of ‘mod_python’ and ‘Emacs’, see the previous
Section.

• Development Libraries
• Development Tools
• GNOME Software Development

87	

Appendix F How to install Scientific Linux

• X Software Development

For the settings of SELinux and ‘iptables’, see Section F.5.

F.3 New installation (SL 6.x)

During the course of installation, the screen of the main operations appears. When the
‘Software Development’ is checked (fig. 18), almost all the necessary packages will be
installed. Since ‘libuuid-devel’ package necessary for the compile of the DAQ components
has not yet been installed, execute the following to install it.

yum install libuuid-devel

To use ‘WebUI’, ‘mod_wsgi’ is required. So, after the installation of Scientific Linux,
execute the following to install it.

root# yum install mod_wsgi

Also, in Scientific Linux 6.x, the above package selection will not install ‘Emacs’ as your
editor. If you need it, execute the following to install it after the system installation.

root# yum install emacs

For the settings of ‘SELinux’ and ‘iptables’, see Section F.5.

F.4 Adding the development environment later (SL 6.x)

If ‘Gnome Desktop’ is already running but the development environments (such as gcc,
make) are not yet installed, use ‘yum’ command to install ‘Development tools’ and
‘Additional development’ group *16. Further, ‘libuuid-devel’ package is required.

root# yum groupinstall ’Development tools’
root# yum groupinstall ’Additional development’
 root# yum install libuuid-devel

For the addition of ‘libuuid-devel’, ‘mod _wsgi’ and ‘emacs’, see the previous Section.
For the settings of ‘SELinux’ and ‘iptables’, see Section F.5.

*16 Selecting these groups on GUI seems to be impossible.

88	

Appendix F How to install Scientific Linux

Fig. 18 Selection of computer tasks on SL 6.x

F.5 Setting up ‘SELinux’ and ‘iptables’

Since ‘WebUI’ will not operate with ‘SELinux’ enabled, it needs to be disabled.
To check if ‘SELinux’ is enabled, use ‘getenforce’.

% getenforce

When enabled, a message shows ‘Enforcing’ or ‘Permissive’. When disabled, it shows
‘Disabled’.

To disable it, rewrite the line starting with ‘SELINUX=’ in ‘/etc/sysconfig/selinux’ as
follows and then reboot the system.

SELINUX=disabled

With the ‘iptables’ packet-filtering, the transmission and reception of the packets required
by the DAQ-Middleware may not be possible. To avoid this problem, it should be simpler to
stop the ‘iptables’ packet filtering.

89	

Appendix F How to install Scientific Linux

To confirm the ‘iptables’ currently packet-filtering, execute the following.

root# service iptables status

When ‘iptables’ is operating, its packet filtering rule will be displayed. When not operating, it
displays as follows.

iptables: Firewall is not running.

When the packet filtering is enabled, execute the following to disable it.

root# service iptables stop

To make it always disabled after any reboots, execute the following.

root# chkconfig iptables off

90	

Appendix G To command from command line to DAQ Operator

Appendix G To command from command line to DAQ Operator

As the tool, other than the web browser, to issue a command to the DAQ Operator via
‘http’, a command line tool using ‘Python’ is provided. The ‘/usr/bin/daqcom’ is its
executable file. Simply executing ‘daqcom’ shows its help message. In SL 5.x, you can
obtain the state (of the http communication with DAQ Operator) by executing the following.

daq% daqcom http://localhost/daqmw/operatorPanel/ -g state

For SL 6.x, the URL has been changed to the following.

daq% daqcom http://localhost/daqmw/scripts/ -g state

For more details, see the reference [4].

91	

References

References

[1] DAQ-Middleware Home page http://daqmw.kek.jp/
[2] DAQ-Middleware 1.1.0 Technical Manual, June 2011 (DAQ-
Middleware 1.1.0 技術解説書、2011 年 6 月),

http://daqmw.kek.jp/docs/DAQ-Middleware-1.1.0-Tech.pdf
[3] Yoshiji Yasu, Hiroshi Sendai, Condition database development manual, 3rd August 2010
(安芳次、千代浩司、Condition データベースの開発マニュアル、2010 年 8 月 3 日),

http://daqmw.kek.jp/docs/ConditionDevManual-1.0.0.pdf
[4] Python command manual for DAQOperator operation, April 2012
(DAQOperator 操作用 Python コマンドマニュアル、2012 年 4 月),

http://daqmw.kek.jp/docs/PythonCommandForDAQMWOperation.pdf

