

Abstract—Functionality of DAQ-Middleware is presented with an

introduction to DAQ-Middleware followed by its features, including a
detailed description of DAQ Components with an example of the
architecture, system configuration related to the configuration database
and condition database, Web interface, and finally remote booting of
DAQ Components.

 DAQ-Middleware is already used in experiments at J-PARC (Japan
Proton Accelerator Research Complex), Tokai, Japan.

Index Terms— RT-Middleware, Database, Web

I. INTRODUCTION
HAT is DAQ-Middleware [1, 2, 3, 4, 5]? It is a

software framework of a network-distributed DAQ
system based on Robot Technology (RT) Middleware [6].
RT-Middleware (RTM) is an international standard of the
Object Management Group (OMG) not only for Robotics but
also for embedded systems. RT-Middleware provides the
integration of RT systems as a Robotic Technology Component
(RTC), which is the software unit. An RTC is a logical
representation of a hardware and/or software entity that
provides well-known functionality and services. The software
package of RT-Middleware was developed by the National
Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba, Japan [7].

The package can run on several operating systems such as
Linux and Windows. It also supports C++, Python, Java
and .NET as programming languages. The RTC on the packages
has several features as follows:

• Execution context, which has a simple state machine and
behaves as the main thread for executing core logic.

• Data port, which is used for continuous data flow. It has
InPort as input and OutPort as output. CORBA and TCP/IP
socket as the communication protocol are available.
Multiple ports can be implemented in a RTC. A data port
behaves as a thread.

• Service port, which is defined by the user as the CORBA
IDL for sending and getting its own parameters in the RTC.

Why did we adopt RT-Middleware? Many DAQ systems so

Manuscript received June 7, 2009; revised September 28, 2009
Y. Yasu is with High Energy Accelerator Research Organization, 1-1 Oho,

Tsukuba, Ibaraki, 305-0801, Japan (corresponding author to provide phone:
+81298645383; fax:+81298642580; e-mail: Yoshiji.Yasu@ kek.jp).

K. Nakayoshi is with High Energy Accelerator Research Organization, 1-1
Oho, Tsukuba, Ibaraki, 305-0801, Japan (e-mail: Kazuo.Nakayoshi@ kek.jp).

H. Sendai is with High Energy Accelerator Research Organization, 1-1 Oho,
Tsukuba, Ibaraki, 305-0801, Japan (e-mail: Hiroshi.Sendai@ kek.jp).

E. Inoue is with High Energy Accelerator Research Organization, 1-1 Oho,
Tsukuba, Ibaraki, 305-0801, Japan (e-mail: Eiji.Inoue@ kek.jp).

far could share the device driver and the library. Thus, they
could make their own DAQ system using the common software.
However, they could not share the software on the DAQ
Component level. Sometimes experimental groups could share
a common DAQ system. We rather like to use not the level of
the DAQ system, but the DAQ Component because of its
flexibility and reusability. Why could we not share the DAQ
Component? Because of there is no international standard of the
DAQ Component level. DAQ-Middleware is one of the
solutions.

DAQ-Middleware provides the integration of the DAQ
system and the DAQ Component is the software unit.
DAQ-Middleware in Fig. 1 is based on RT-Middleware and has
been extended for the DAQ system. The main extensions are as
follows:

• Extended state machine
• Run control mechanism
• XML-based configuration mechanism
• Web-based system interface

Those extensions are implemented on the DAQ Operator and
DAQ Component.

Fig. 1. DAQ-Middleware.

 Following, the feature of the DAQ Component and DAQ
Operator is explained.

• DAQ Component provides the following functionalities:
• Data path for receiving and sending data
• Command/status path for getting system configuration

parameter
• Command/status path for getting DAQ command
• Command/status path for sending DAQ status
• Reading, parsing and setting condition parameters
• Core logic with handling both paths

• DAQ Operator provides the following functionalities:
• Dynamic connection of DAQ Components of data path

and command/status path
• Controlling DAQ Components via command/status path
• Reading, parsing configuration and sending the

parameters to DAQ Components
• System interface (Web interface)

Functionality of DAQ-Middleware
Yoshiji Yasu, Kazuo Nakayoshi, Hiroshi Sendai and Eiji Inoue

W

II. AUTONOMOUS DAQ COMPONENT
The DAQ Component inherits the InPort/OutPort of RTC for

data port and Consumer/Provider of RTC for the service port
[6, 7]. Fig. 2 shows the autonomous DAQ Component. The data
port and the service port are used for data path and
command/status path, respectively. The main thread is used for
core logic including management of command/status flow and
data flow. The DAQ Component does not work just in the
client/server model, but is autonomous with its own state
machine. The state machine is shown in Fig. 3.

Fig. 2. Autonomous DAQ Component

RTC has a simple state machine. The DAQ state machine is
defined in the active state of RT-Middleware. There are four
states and eight transitions. The state machine is tightly coupled
with the run control on the DAQ Operator and DAQ Component.
DAQ-Middleware does not provide the framework of easily
adding a new state and removing a previous state.

Fig. 3. DAQ state machine

III. TYPES OF DAQ COMPONENTS
There are several types of DAQ Components shown in Fig. 4.

Fig. 4. Types of DAQ Components

One is source type, which is the source of the data to be sent

to another Component. An example of this type is the Gatherer
Component for data readout. Another one is sink type. Data
received from another Component will be processed, but will
not be sent to other Component. Logger Component for logging
data and Monitor Component for data analysis belong to this
type. Dispatcher type is necessary to send data to multiple paths.
By using those types of Components, a basic DAQ unit was
developed for the DAQ system of J-PARC/MLF
experiments [3, 4]. J-PARC stands for Japan Proton
Accelerator Research Complex. This is a high intensity proton
accelerator facility using MW-class high power proton beams at
both 3 GeV and 50 GeV. MLF stands for Materials and Life
Science Facility, which is aimed at promoting materials science
and life science using the world’s highest intensity pulsed
neutron and muon beams produced using 3 GeV protons. The
requirement of total throughput on data path is about 30 MB/sec
and DAQ-Middleware meets the requirement.

Additionally, filter type is necessary for conversion of data.
Merger type will be used for building events from event
fragments or simply gathering data, and then sending them to
another Component. Those types of DAQ Components are not
used for MLF now, but generally useful.

The combination of DAQ Components will make the DAQ
configuration flexible. For example, Gatherer and Monitor
Components are dependent on the detectors. Thus, Gatherer and
Monitor were developed for each detector. However,
Dispatcher and Logger Components are commonly used for the
MLF DAQ system. Each experiment can choose the
combination.

IV. ARCHITECTURE
The architecture of DAQ-Middleware is illustrated in Fig. 5.

In Fig. 5, the DAQ Operator Component and System Interface
are described in a frame for DAQ Operator. This means that the
DAQ Operator including the System Interface runs on a PC.
Similarly, a unit in which a Gatherer, a Dispatcher, a Logger and
a Monitor run on a PC, is defined as a basic DAQ unit.

Fig. 5. The architecture of DAQ-Middleware

The DAQ Operator reads and parses the system configuration

written in XML and then stores the parameters as pairs of key
and value. When the control panel issues a “configure”
command, the DAQ Operator receives the command via the
System Interface and then sends the parameters to the DAQ
Components. In the same way, the control panel issues “start”
and “stop” commands to control the readout, the data logging
and the online data analysis. The DAQ Operator can manage
multiple basic DAQ units. The readout module uses the
hardware-based TCP [11] processor called SiTCP [12]. The
SiTCP is a general purpose front-end interface. From a
network-distributed DAQ system point of view, it is better that
the readout protocol of the front-end is TCP/IP while the
transfer speed of SiTCP can reach the hardware limitation of
Ethernet. On the other hand, DAQ-Middleware is independent
of the readout protocol. The online histogram using ROOT [13]
and online histogram displaying on the Web browser are now
available. There are two types of display methods. One is to use
X window. Another is to browse image files from a Web
browser. In Fig. 5, the online histogram using ROOT (bottom in
Fig. 5) uses the former while the ROOT libraries are linked to
the Monitor Component. Another one (middle in Fig. 5) uses
the latter.

V. CONFIGURATION & CONDITION DATABASES
System configuration and condition parameters are written in

XML documents as text files. The system configuration file is
not often modified after the configuration is decided. On the
other hand, the condition file describes the parameters of the
readout hardware module or analysis. The parameters may be
often changed.

In Fig. 6, the configuration is parsed by the DAQ Operator
and the parameters are sent to the DAQ Components.

In Fig. 7, the condition is automatically converted to a JSON
document by Xalan [14] and is then parsed by the DAQ
Component. JSON document [15] was adopted instead of XML
document because the DAQ Component should be as
lightweight as possible. After parsing in both cases, a parameter
is stored as a pair of key and value in the DAQ Component.

Fig. 6. System configuration mechanism

Fig. 7. Condition mechanism

VI. COMMUNICATION WITH WEB INTERFACE
DAQ-Middleware uses the XML/HTTP protocol [16] to

communicate with a Web client or other external world.

Fig. 8. Web interface

In Fig. 8, the DAQ Operator receives commands and sends
statuses from/to the Client (Web Browser) via the System
interface, which consists of an Apache HTTP server with a
mod_python module and message passing program to
communicate with the DAQ Operator Component. Ajax
technology [17] has an important role in HTML [18] and
JavaScript (ECMAScript) [19] programming to reduce the
workload. For example, when “Get Status” button in Fig. 8 is

clicked, Ajax Request written in JavaScript gets DAQ status as
XML document (Ajax Response) asynchronously and then
changes only status items in HTML on the client side instead of
changing the whole page.

VII. REMOTE BOOTING MECHANISM
DAQ Components will run on multiple PCs. For the booting

mechanism, xinetd [20] was adopted. The remote booting
mechanism is shown in Fig. 9. The script to run DAQ
Components on a PC will be sent to the PC, and then xinetd
daemon running on the PC will execute the script to run the
DAQ Components. After the DAQ Operator and DAQ
Components run, the DAQ Operator connects data paths and
command/status paths of DAQ Components each others
according to the configuration, by using RT-Middleware’s
naming service daemon, in which the object references of the
DAQ Components are already registered.

Fig. 9. Remote booting mechanism

VIII. CONCLUSION
DAQ-Middleware provides a minimum set of functions for a

network-distributed DAQ system with autonomous DAQ
Components configured by databases in cooperation with a
Web system.

ACKNOWLEDGEMENT
We wish to thank Prof. J. Haba at KEK for his support of this

project. This work was performed in the next generation DAQ
sub-group of the KEK Detector Technology Project at KEK.
We also wish to thank N. Ando, T. Kotoku and S. Hirano at
AIST for RT-Middleware support. We thank the staff of
experimental groups at J-PARC/MLF and KEK electronics
system group for their help.

REFERENCES
[1] Y. Yasu, E. Inoue, K. Nakayoshi, H.Fujii, Y.Igarashi, H. Kodama, N.

Ando, T. Kotoku, T. Suehiro, S. Hirano, “Feasibility of data acquisition
middleware based on robot technology,” CHEP2006 Macmillan
Advanced Research Series p458-461

[2] Y. Yasu, K. Nakayoshi, E. Inoue, H. Sendai, H. Fujii, N. Ando, T. Kotoku,
S. Hirano, T. Kubota, and T. Ohkawa, “A Data Acquisition Middleware,”
15th IEEE NPSS Real Time Conference, 2007,
doi:10.1109/RTC.2007.4382850

[3] K. Nakayoshi, Y. Yasu, E. Inoue, H. Sendai, M. Tanaka, S. Satoh, S.
Muto, N. Kaneko, T. Otomo, T. Nakatani, T. Uchida, “Development of a
data acquisition sub-system using DAQ-Middleware,” Nucl. Instr. and
Meth. A 600 (2009) 173-175.

[4] K. Nakayoshi, Y. Yasu, H. Sendai, E. Inoue, M. Tanaka, S. Sato, S. Muto,
J. Suzuki, T. Otomo, T.Nakatani,, T. Ito, Y. Inamura, M. Yonemura, T.
Hosoya, T. Uchida, “DAQ-Middleware for MLF/J-PARC,” presented at
The 1st international conference on Technology and Instrumentation in
Particle Physics, March12-17, 2009, Tsukuba, Japan

[5] Y. Yasu, K. Nakayoshi, H. Sendai, E. Inoue, M. Tanaka, S. Suzuki, S.
Satoh, S. Muto, T. Otomo, T. Nakatani, T. Uchida, N. Ando, T. Kotoku,
S. Hirano, “Development of DAQ-Middleware,” presented at 17th
International Conference on Computing in High Energy and Nuclear
Physics, 21 - 27 March 2009 Prague, Czech Republic

[6] Object Management Group, “Specification of Robotic Technology
Component (RTC),” Version 1.0, Available:
http://www.omg.org/spec/RTC/1.0/

[7] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, W. K. Yoon,
“RT-Middleware: Distributed Component Middleware for RT (Robot
Technology) ,” 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS2005), pp.3555-3560, 2005.08, Edmonton,
Canada

[8] World Wide Web Consortium, “Extensible Markup Language (XML) ,”
[Online]. Available: http://www.w3.org/XML/

[9] Apache Software Foundation, Apache HTTP Server Project, [Online].
Available: http://httpd.apache.org/

[10] Apache Software Foundation, “Apache/Python Integration,” Available:
http://www.modpython.org/

[11] Internet Engineering Task Force, “TRANSMISSION CONTROL
PROTOCOL,” RFC 793

[12] T. Uchida, “Hardware-Based TCP Processor for Gigabit Ethernet,” IEEE
Trans. Nucl. Sci. NS 55 (2008) 1631.

[13] The ROOT Team, “ROOT,” [Online]. Available:
http://root.cern.ch/drupal/

[14] Apache Software Foundation, “Xalan,” [Online]. Available:
http://xalan.apache.org/

[15] Crockford D, “The application/json Media Type for JavaScript Object
Notation (JSON) ,” RFC 4627

[16] World Wide Web Consortium, “HTTP - Hypertext Transfer Protocol,”
[Online]. Available: http://www.w3.org/Protocols/

[17] World Wide Web Consortium, “Ajax,” [Online]. Available:
http://www.w3.org/TR/2006/ WD-XMLHttpRequest-20060405/

[18] World Wide Web Consortium, “HTML,” [Online]. Available:
http://www.w3.org/html/

[19] ISO/IEC, “ECMAScript,” ISO/IEC 16262:2002
[20] Panos Tsirigotis , “xinetd,” [Online]. Available: http://www.xinetd.org/

